
1

Insecurity of Inputs to CGI Program

By Suhairi Mohd Jawi @ Said

Table of Contents

Purposes ………………………………………………………………………… 2
Introduction……………………………………………………………………… 2
1. Buffer Overflow of Faulty CGI Source Code ………………………………... 2
2. Unfiltered Metacharacters …………………………………………………… 3
3. Invalid States ………………………………………………………………… 5

a. Cookies ……………………………………………………………… 5
b. Hidden Fields ………………………………………………………… 5
c. Environment Variables ……………………………………………… 5

RFProxy – A Web Assessment Tool …………………………………………… 6
a. HTML rewriting enable ……………………………………………… 6
b. Record requests for later replay ……………………………………… 6
c. Intercept and handle cookies ………………………………………… 6
d. Override 'Referer' header with new value …………………………… 7

Other Web Assessment Tools …………………………………………………… 7
a. AppScan ……………………………………………………………… 7
b. HTTPush ……………………………………………………………… 7
c. Achilles ……………………………………………………………… 7

Conclusion ………………………………………………………………………… 7
List of References ………………………………………………………………… 8
Appendix A: RFProxy Administration Interface ………………………………… 9
Appendix B: Sample Form Parsed by RFProxy ………………………………… 10

2

Purposes

This paper is to list some points that each web programmer has to consider while coding
a web based application that interacts with user inputs through CGI as well as tools that
can be used to test it.

Introduction

Common Gateway Interface or CGI is a method for web browser (client) to interact with
host operating system through a web server. CGI allows the client to run a program or
web application on the host machine. The program can be written in any programming
language whether it is compiled or interpreted, as long as it is executable and written
correctly. The following figure shows the components of the client, server and CGI
program.

The program usually will interact with other applications or services on the operating
system of the web server to complete the tasks. They can be database server, mail
program and content services. The program will pass the user inputs (obtained from the
URL or HTML form) and states (from cookies, hidden fields and environment variables)
to the application to be processed and the results will be passed back to the client.

One of the drawbacks of this technique is mostly concerned with user inputs and the
states of the transaction. There is no guarantee that a user will enter the input correctly
(intentionally or accidentally) and states (values of cookies, hidden fields and
environment variables) may be modified.

Following are the discussions of some known issues regarding inputs while developing
and implementing the CGI program. At the end of this article, a tool called RFProxy by
Rain Forest Puppy will be discussed that can be used to test a CGI program against user
inputs.

1. Buffer Overflow of Faulty CGI Source Code

Buffer overflow is a well-known attack where the length of the user input is greater than
maximum length of input accepted by the program. The overflow part means that after
the maximum number of characters, the input become executable code that is used to take
over or crashes the system.

Web
Browser

Web
Server

Web
Applications

(CGI
programs)

Database

Sendmail

F
I

R
E
W
A
L
L

3

Consider the following code:

#include <stdio.h>
#gcc test.c –o test
int main(int argc, char *argv[])
{
 char user_input[255];
 puts ("Content-Type: text/html\r\n\r\n");
 while (argc--) {
 strcpy(user_input, argv[argc]);
 puts(user_input);
 }
 return 0;
}

and this request:
http://url/cgi-bin/test?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA…AAAAA

where AAA part is longer than 255 characters. The program test program just simply
crashed. However, there are some severe results on some system. An expert user may be
able to craft a string of characters that can be used to overwrite the program instruction
pointer which points to the next program instruction. If the overflow part contains a valid
memory address, the next program instruction will not be executed. Instead, the code,
which is pointed by the new instruction pointer, will be executed. This can be used to call
another program routine or to avoid security check.

This type of input may be passed from the encoded URL as above or through a form
field. In order to minimize or stop this threat, the author must determine the length of the
legitimate input.

At the user level in the form fields of type TEXT and PASSWORD, there is an option to
specify the MAXLENGTH of the character input. However, this will not guarantee the
length of input is secured. Any user may edit the form offline or use some tools such as
interception proxy that can modify the MAXLENGTH before send it to the server.

At the application level, depending on the functionality of the program, the author can
stop the processing and print error messages to the user with some warning. There are
some ways if the execution is allowed to proceed:

(a) Array bound must be checked before write it to the buffer. Or
(b) Only use string function that can specify explicit buffer size.

2. Unfiltered Metacharacters

Metacharacters are characters other than alphanumeric. These special characters may
carry some meaning and functionality in some programming languages, interpreters,
applications and operating systems. If these characters are passed without checking, it
may cause some undesirable results and disasters.

4

These characters are: ; < > * | ‘ & $! () [] { } : ‘ “ / #

For examples,
(a) ‘<’, ‘>’, ‘“’ and ‘&’ can affect the rendering of the html in the browser.
(b) In perl, $ and & used as prefix to variables and function calls respectively.
(c) In some web server, combination of ‘/’ and ‘.’ can be used to traverse

directories.

One solution to these is by converting them to other representations. Many perl programs
have a function call to convert them into HTML special characters code, such as

sub htmlify {

my($string) = shift;

Special Characters; RFC 1866
$string =~ s/&/&/g;
$string =~ s/\"/"/g;
$string =~ s/</</g;
$string =~ s/>/>/g;
. . .
return $string;

}

The complete references of HTML conversion can be obtained at
http://www.bbsinc.com/iso8859.html. Other solution is by inserting an escape character
(\) before the metacharacter in the code so it will not be evaluated. However, to ensure
total security of the web server’s host and the underlying application, it is necessary to
wipe them out completely.

Filtering metacharacters are important especially for application which

(a) Writing Server Side Include (SSI) tag to a SHTML enabled page such as
guestbook application. Tag like:

<!--#exec cmd="/bin/rm -rf /"-->

will delete everything on the machine of web server. This can be avoided by
disabling exec functionality in the web server.

(b) Passing user inputs as arguments to a system or shell command of the operating
system of the web server. For example, system command can be invoked in perl
script by using system(arguments) and exec(arguments).

(c) Forward request to another application such as database server and mail server.
(d) Creating a file on the fly. Attacker may be able to create a .cgi file and execute it

remotely.

5

3. Invalid States

The stateless characteristic of the HTML makes it not interactive. Any web server does
not have any clue what are the previous states of the transaction between client and
server. In order to overcome this, many programmers manipulate cookies, hidden fields
and environment variables in the program codes as an integrity check of the transaction
status.

(a) Cookies

A cookie is a small file stored on the client side. Programmers use cookies to store user
information such login and account information, browsing history and transaction
information. Unfortunately, cookies are easily exploited and modified. Someone may
change the values and then application may get false information about the users. One
good example of this is the incident happened to Yahoo and Hotmail
(http://www.nbnn.com/news/01/166436.html) where someone could open other email
accounts by stealing the cookie values.

(b) Hidden Fields

Hidden field is a type of HTML form input. Some programmers usually store some
values to track the transaction status and the next action to be taken by the target
application. Like cookies, values of hidden fields can be modified by editing the form
offline or online. Therefore, some confidential information should not be included in the
code such login, password, application server details and email address.

(c) Environment Variables

Environment variables are values passed by web server to the CGI scripts. They carry
some information regarding the browser and the server. Listing of these variables is
available at http://perlfect.com/articles/cgi_env.shtml. In perl, these variables are
contained in the hash %ENV while in C they can be retrieved by calling getenv().
However, these values can be manipulated by some methods.

All the values carry by the above entities can be manipulated. Some web applications
may be waiting for expected input from the client. If the expected input is not arrived or
the value of the input is not valid, the application may be in waiting state for some time
or just simply crashed and may lead to denial of service because other clients may not be
able to make request.

In Black Hat Briefings 2001 in Singapore, Rain Forest Puppy had used a sample
shopping cart program in his presentation entitled Web Assesment Tools to demonstrate
how a user can manipulate the above values. A cookie can be used to store login
information but later someone else may be able to login by creating a cookie containing
valid user information. While doing shopping, a user can change the price tags and be
able to buy a number of items with cheaper prices. The following section will discuss

6

some features provided by RFProxy to assess the security of CGI programs against user
inputs as well as other tools that have same functionalities.

RFProxy – A Web Assessment Tool

RFProxy is written by Rain Forest Puppy and was released at CanSecWest 2001 in
Vancouver. It is written in perl and the source code can be obtained from rfp.labs
homepage at http://www.wiretrip.net/rfp/. The program is run on the client side to
monitor or modify incoming or outgoing HTTP connections. The snapshot of its interface
is included in the Appendix A.

Although it is meant for auditing CGI program, it is capable to pose threat to any CGI
programs that does not have proper implementation and robustness. Among features that
is related with the above discussion on input to CGI program are:

(a) HTML rewriting enable

When a client requests a page from a server, the requested page is intercepted and
rewritten. All input type values in the html form are made visible, well indicated and
modifiable as shown in the Appendix B. For example:

• TEXT and PASSWORD
- Input type and form name can be viewed by clicking the green triangle
- Characters are made visible during typing in password field.
- Input length are not limited therefore MAXLENGTH becomes useless.

• HIDDEN field are not hidden anymore and value can be changed.

• Values for OPTION in SELECT field can be changed.

This capability can test how a CGI program will behave when it receive inputs
with values that never been tested. Modified inputs may cause buffer overflow,
arbitrary command execution or crashing the program.

(b) Record requests for later replay

The communication between the client and server is recorded. User can replay the entire
session or a portion of it at some later point in time. This can be used to test a program
that manipulates session id or examine the pattern of requests submitted by the client
during communication.

(c) Intercept and handle cookies

Sites that use cookies for authentication in order to store some details after a successful
login are vulnerable to the changing cookies values. An attacker may guess or steal
values of a cookie in order to get access into somebody else account.

7

(d) Override 'Referer' header with new value

Referer is a value contained in environment variables. It tells a CGI program from which
URL the current page is linked. It can be used to validate whether a user make request
from a valid site such as after authentication. If the attacker changes the Referer value, he
may gain unauthorized access to the site.

Other Web Assessment Tools

There are some other tools that can be used to test CGI program against user inputs.

(a) AppScan

Appscan is developed by Sanctum (http://www.sanctuminc.com) and costs with some
high price. This can be used to check CGI program against application tampering, cookie
poisoning, third-party misconfiguration, known Web vulnerabilities and buffer
overflows.

(b) HTTPush

HTTPush’s funtionality is almost similar to the RFProxy and it is also written in Perl by
Lluis Mora of S21SEC (http://www.s21sec.com/download/httpush-current.tar.gz) and
available freely. Its development is farther than PFProxy and also supports SSL.

(c) Achilles

Achilles is available freely at http://www.digizen-security.com/projects.html. It is a proxy
server acting as a man-in-the-middle during HTTP session between client and server. The
ability to intercept and alter an HTTP session’s data can be used to test security of web
applications against user inputs.

Conclusion

Most of the web applications available for free are using the same libraries and
techniques. Even the new scripts or codes sometimes copy somebody else coding. It
seems the above problems may not be easily wiped out if the author does not take care
what has been written, copied and reused.

Application developer must learn how to handle input correctly and not give full trust to
user input and application since they are all can be tempered. They are always new tools
available in the Internet and they can be used to test the CGI program.

8

List of References

[1] K.1 Information Security Kickstart Highlights,
Programmatic & Web Security, 6.13 – 6.19, 6.23 – 6.24
SANS GIAC © 2000, 2001.

[2] Eric Kim, Eugene. Chapter 9: CGI Security, Writing Secure CGI Programs.
17 December 1996. URL: http://w3rum.upr.clu.edu/htmldocs/cgi/ch09/0903.html

[3] J. Brewer, Kevin. ASCII – ISO 8859-1 (Latin-1) Table with HTML Entity Names.
31 January 1997. URL: http://www.bbsinc.com/iso8859.html

[4] Bartlett, Michael.Vulnerability Discovered In Yahoo Mail, Hotmail. 4 Jun 2001.
URL: http://www.nbnn.com/news/01/166436.html

[5] D. Stein, Lincoln. & N. Stewart, John. The World Wide Web Security FAQ:
CGI Scripts, 28 July 2001. URL: http://www.w3.org/Security/Faq/wwwsf4.html

[6] Moraitakis, N. & Zervas, G. CGI Environmental Variables, 2000.
URL: http://perlfect.com/articles/cgi_env.shtml

[7] Rain Forest Puppy. BlackHat Asia conference materials, Singapore. April 2001
URL: http://www.wiretrip.net/rfp/talks/blackhat-asia-2001/

[8] Kalev Ashdod, Danny. Avoiding Buffer Overflows.
URL: http://www.devx.com/free/tips/tipview.asp?content_id=2912

[9] Forristal, Jeff. AppScan Flags Security Problems in Web Applications.
16 October 2001. URL: http://www.networkcomputing.com/1120/1120sp3.html

[10] DigiZen Security Group, Achilles, 2000,
URL: http://www.digizen-security.com/projects.html

9

Appendix A: RFProxy Administration Interface

10

Appendix B: Sample Form Parsed by RFProxy

Original HTML Source Code:

<HTML>
<HEAD>
 <TITLE>Test Sample Form</TITLE>
</HEAD>
<BODY>

 <FORM ACTION="?" METHOD=POST>
 <INPUT TYPE=HIDDEN NAME="action" VALUE="check">
 <INPUT TYPE=HIDDEN NAME="username" VALUE="john">

 <TABLE>
 <TR><TD>TEXT</TD><TD><INPUT TYPE=TEXT NAME="text" SIZE=10 MAXLENGTH=10></TD></TR>

 <TR><TD>PASSWORD</TD><TD><INPUT TYPE=PASSWORD NAME="password" SIZE=10
 MAXLENGTH=10></TD></TR>

 <TR><TD>RADIO</TD><TD>
 Radio 1<INPUT TYPE=RADIO NAME="radio" VALUE=1>
 Radio 2<INPUT TYPE=RADIO NAME="radio" VALUE=2>
 Radio 3<INPUT TYPE=RADIO NAME="radio" VALUE=3>
 </TD></TR>

 <TR><TD>CHECKBOX</TD><TD>
 Checkbox 1<INPUT TYPE=CHECKBOX NAME="check" VALUE=1>
 Checkbox 2<INPUT TYPE=CHECKBOX NAME="check" VALUE=2>
 Checkbox 3<INPUT TYPE=CHECKBOX NAME="check" VALUE=3>
 </TD></TR>

 <TR><TD>SELECT</TD><TD>
 <SELECT NAME="select">
 <OPTION VALUE="Select 1">Select 1
 <OPTION VALUE="Select 2">Select 2
 <OPTION VALUE="Select 3">Select 3
 </SELECT>
 </TD></TR>

 <TR><TD COLSPAN=2>

</TD></TR>

 <TR><TD COLSPAN=2 ALIGN=CENTER>
 <INPUT TYPE=SUBMIT VALUE="Submit">
 <INPUT TYPE=RESET VALUE="Reset">
 </TD></TR>
 </TABLE>
 </FORM>
</BODY>
</HTML>

