
 Page 1 07-12-2005

SECURING APPLICATIONS FROM HACKERS

By
Norhazimah Abdul Malek

National ICT Security and Emergency Response Centre (NISER)
(This article was published in Computimes on 28 November 2005)

MOST companies today use the Web to do business with customers, employees,
suppliers and others. This is because it is easier to maintain a Web-based
application than a Windows-based one. But how can we be sure that a Web-
based application is secured? Or that data is being shared only by the authorised
users?

The Gartner Group estimates that 75 per cent of cyber attacks today are at the
application level. And about 97 per cent of over 300 Web sites audited are
vulnerable to Web application attacks. The US Federal Bureau of Investigation
also reveals that 95 per cent of the companies are hacked from Web applications,
and only five per cent of them are aware of the attacks
(http://conference.hackinthebox.org/hitbsecconf2005kl/materials/TT-Shreeraj-
Shah-Webhacking-Kungfu.pdf).

From the figures, we can deduce that most company Web sites are prone to cyber
attacks, and some of these companies are not aware that their Web applications
have vulnerabilities that can be exploited by hackers.

According to statistics published by the National ICT Security and Emergency
Response Centre, there have been significant increases in Web defacement
incidents. In the first quarter of this year, there were 256 Web defacements
involving both public and private Web sites, compared to the previous quarter
which recorded 42 of such incidents.

To have a secure Web application, developers of the application must know each
attribute such as query string, form, cookie, script, etc, because they are
vulnerable. These attributes can be exploited by an attacker and expose sensitive
company information if they are not used securely.

Web Application Attacks

There are two types of Web application attacks: automated and manual.
Automated attacks can be used to exploit a Web application using automated
Web application attack tools such as wget, curl, blackwidow and teleport pro.
Using these automated tools, crawling and attacks can be done shortly.

This type of attack can be avoided by setting “honey traps” using HTTP Module
(used in pre/post-processing of requests). The attacker can be put into an infinite
loop using defence trick once it is trapped.

To launch manual attacks, hackers must conduct information gathering such as
address identification, port scanning, social engineering and vulnerability scanning
to find out vulnerabilities that can be exploited.

 Page 2 07-12-2005

Common Web application hacking methods include:

• Source code disclosure: The attacker uses this technique to obtain the
source code of the server-side script such as active server page (ASP), Java
server page (JSP) and PHP hypertext preprocessor (PHP) files, to get
information on the Web application logic such as database structure, source
code comments and parameters.

There are two types of malicious code injections which may allow the source
code disclosure technique to be used: client-side code injection and server-
side code injection.

An example of client-side code injection is cross-site scripting attacks that
occur when the attackers embed malicious code such as script into a
hyperlink. When the user clicks on the hyperlink, the malicious code will be
executed at the Web server, which creates an output page containing the
malicious content that can lead to internal data disclosure.

An example of server-side code injection is remote command execution that
occurs when the attacker injects PHP/ASP code which can cause arbitrary
command execution on the server.

This problem occurs because of poor design and written applications. Web
developers should include exception handling in the programming so errors
can be handled within the code. The errors should be logged and not
displayed at the Web browser.

All inputs such as data types, buffer sizes and metacharacters should be
sanitised and validated before being passed to the internal application logic.

To ensure that a Web application is secured from this kind of attack, the
developer should follow the secure coding practices to make sure that no
“active code” is injected as data contents.

• SQL query poisoning: Normally, Web applications send query strings and
their parameters to the database server to get the requested data from the
database. Attackers may take advantage of this because they can embed SQL
commands inside these parameters, and this is called SQL query poisoning.
This kind of attack may lead to back-end database server compromise.

SQL query poisoning attacks occur because there is no input validation for all
inputs from the client. This is a result of bad programming practice.

A database should be configured correctly to eliminate unnecessary database
users and stored procedures. Using alternative SQL query constructions such
as stored procedures and prepared statements will overcome SQL query
poisoning problems because the SQL string cannot be altered.

 Page 3 07-12-2005

• Session hijacking: Hypertext transfer protocol (HTTP) connections are
stateless. To keep track of an application’s state when the application runs, an
HTTP cookie is used. Cookies will be destroyed when the user logs out from
the system.

Nowadays, there are tools that can be used to intercept HTTP connections
and alter the cookies’ value, and this is called session hijacking. If the
attackers successfully hijack a session, they can gain access to all of the
user’s data and make changes to the data.

Session identifiers, which are unique and generated randomly, can be used to
prevent such attacks. These identifiers are transmitted between the client and
the server.

To secure session identifiers, make sure that they are not stored in the hidden
field, and encrypt them to prevent captured, brute-forced or reverse-
engineered exploitation.

Conclusion

Web application attacks are increasing drastically because there is a lack of
knowledge in securing the applications, especially during the development and
deployment stages of the applications. To control or avoid this menace, we must
ensure that security is being implemented not only during the coding stage, but
also the deployment stage.

The operations of a Web application must be monitored by the administrator so
any exploits can be detected earlier and damages can be minimised or avoided
such as using an intrusion detection system to monitor and filter Web traffic.

It is also recommended for all organisations to conduct a security audit
assessment to ensure that an application is secured before it is published to the
public.

Acknowledgement

The author would like to thank En Zahri Yunos, Strategic Planning Manager of
NISER who has given valuable inputs to this article.

 Page 4 07-12-2005

Appendix A - Example of Web Application Exploits

Type of Exploit Description Result

Authentication
Hijacking

Unsecured credential and identity
management

Account hijacking and
theft of service

Parameter
Tampering

Modified data send to web server
Attacker gains access to
all records in database

Buffer Overflow
Attackers flood server with
requests that exceed buffer size

Attackers crash and take
control of server

Command
Injection

Web application passes malicious
commands to back-end server

Attackers gain access to
data

Cookie Snooping Attacker decodes user credentials
Attacker can log on as
user and gain access to
unauthorized information

SQL Injection
Web application passes malicious
command to database

Attacker can modify data

Cookie Poisoning
Attacker manipulates cookies
passed from server to browser

Attacker can gain access
and modify data

Cross-site
Scripting

Malicious code is executed when
user clicks on a URL

User credentials and
information can be stolen

Invalid
Parameters

Malicious data accepted without
validation

Attacker can hijack client
accounts and steal data

Forceful
Browsing

Client accesses unauthorized
URL

Attacker accesses off-
limit directories

10 Most Aggressive Web Application Exploit – Paul Desmond, Network World.

“All-out blitz against Web app attacks”. May 17, 2004. URL:
http://www.networkworld.com/techinsider/2004/0517techinsidermain.html?page=1

