

	

	
	

	 		
	

	

	
	
	
	
	

First	edition	
2020-05-05	

	
	
	
	

	 	

Guidelines	for	Secure	
Software	Development	Life	
Cycle	(SSDLC)		
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	

		Reference	number:	
		MyVAC-3-GUI-2-SSDLC-v1			

	
	

	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

	 ii	

REGISTERED	OFFICE:	
	
CyberSecurity	Malaysia,	
Level	7	Tower	1,	
Menara	Cyber	Axis,	
Jalan	Impact,	
63000	Cyberjaya,	
Selangor	Darul	Ehsan,	Malaysia	
Email:	myvac@cybersecurity.my	
	
	
COPYRIGHT	©	2020	CYBERSECURITY	MALAYSIA	
	
The	copyright	of	this	document	belongs	to	CyberSecurity	Malaysia.	No	part	of	this	document	
(whether	in	hardcopy	or	electronic	form)	may	be	reproduced,	stored	in	a	retrieval	system	of	
any	 nature,	 transmitted	 in	 any	 form	 or	 by	 any	 means	 either	 electronic,	 mechanical,	
photocopying,	recording,	or	otherwise	without	the	prior	written	consent	of	CyberSecurity	
Malaysia.	The	information	in	this	document	has	been	updated	as	accurately	as	possible	until	
the	date	of	publication.	
	
	
NO	ENDORSEMENT	
	
Products	and	manufacturers	discussed	or	referred	to	in	this	document,	if	any,	are	presented	
for	 informational	 purposes	 only	 and	 do	 not	 in	 any	 way	 constitute	 product	 approval	 or	
endorsement	by	CyberSecurity	Malaysia.	
	
	
TRADEMARKS	
	
All	terms	mentioned	in	this	document	that	are	known	to	be	trademarks	or	service	marks	
have	been	appropriately	capitalised.	CyberSecurity	Malaysia	cannot	attest	to	the	accuracy	of	
this	 information.	Use	of	 a	 term	 in	 this	document	 should	not	be	 regarded	as	affecting	 the	
validity	of	any	trademark	or	service	mark.	
	
	
DISCLAIMER	
	
This	 document	 is	 for	 informational	 purposes	 only.	 It	 represents	 the	 current	 thinking	 of	
CyberSecurity	Malaysia	on	the	security	aspects	of	the	Secure	Software	Developemt	Life	Cycle	
environment.	 It	 does	 not	 establish	 any	 rights	 for	 any	 person	 and	 is	 not	 binding	 on	
CyberSecurity	Malaysia	or	 the	public.	The	 information	appearing	on	 this	 guideline	 is	not	
intended	to	provide	technical	advice	to	any	individual	or	entity.	We	urge	you	to	consult	with	
your	own	Secure	Software	Developemt	Life	Cycle	advisor	before	taking	any	action	based	on	
information	appearing	on	this	guideline	or	any	other	documents	to	which	it	may	be	linked.	
	
	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

	 iii	

Contents	 	 					 	 	 	 	 	 	 	 													Page	
1	 Introduction	..	1	
1.1	 Scope	...	1	
1.2	 Objective	..	2	
1.3	 Intended	audience	..	2	

2	 Terms,	definitions,	abbreviated	terms	and	acronyms	..	2	
2.1	 Terms	and	Definitions	..	2	
2.2	 Abbreviated	terms	and	acronyms	..	5	

3	 Secure	Software	Development	Life	Cycle	(SSDLC)	...	6	

4	 Phase	1:	Security	requirements	...	7	
4.1	Sources	of	security	requirements	..	7	
4.1.1	Identify	core	security	requirements	...	7	
4.1.2	Identify	general	requirements	...	10	
4.1.3	Identify	operational	requirements	...	10	
4.1.4	Identify	other	requirements	..	10	

4.2	Data	classification	...	10	
4.2.1Types	of	data	..	11	
4.2.2	Labeling	the	data	...	11	
4.2.3	Data	ownership	and	roles	..	11	
4.2.4	Data	lifecycle	management	(DLM)	..	11	
4.2.5	Privacy	requirements	..	11	

4.3	Use	case	and	misuse	case	modeling	..	12	
4.3.1	Analyze	the	use	case	scenarios	...	12	
4.3.2	Analyze	the	misuse	case	scenarios	..	13	
4.3.3	Creating	attack	model	..	13	
4.3.4	Select	mitigation	control	...	13	

4.4	Risk	management	..	13	
4.4.1	Risk	assessment	...	13	
4.4.2	Risk	mitigation	...	15	
4.4.3	Evaluation	and	assessment	..	16	

5				Phase	2:	Security	design	..	17	
5.1	Core	security	design	considerations	...	17	
5.1.1	Confidentiality	design	..	17	
5.1.2	Integrity	design	..	18	
5.1.3	Availability	design	..	18	
5.1.4	Authentication	design	..	18	
5.1.5	Authorization	design	..	18	
5.1.6	Accountability	design	..	19	

5.2	Additional	design	considerations	..	19	
5.2.1	Programming	languages	...	19	
5.2.2	Data	type,	format,	range,	and	length	..	19	
5.2.3	Database	security	..	20	
5.2.4	Interface	design	...	20	
5.2.5	Interconnectivity	...	21	

5.3	Threat	modeling	..	21	
5.3.1	Step	1:	Decompose	the	software	..	21	
5.3.2	Step	2:	Determine	and	rank	threats	..	22	
5.3.3	Step	3:	Determine	countermeasures	and	mitigation.	...	22	

6				Phase	3:	Security	development	...	22	
6.1	Common	software	vulnerabilities	and	controls	..	22	
6.1.1	Vulnerability	databases	..	22	

																		MyVAC-3-GUI-2-SSDLC-v1	

	 iv	

6.1.2	Defensive	coding	practices	..	23	
6.2	Secure	software	processes	...	23	
6.2.1	Source	code	versioning	...	23	
6.2.2	Code	analysis	 	...	23	
6.2.3	Code	review	 	..	23	
6.2.4	Developer	testing	 	...	23	

6.3	Securing	build	environments	..	24	
6.3.1	Physically	securing	access	to	the	software’s	that	building	code.	24	
6.3.2	Using	access	control	lists	(ACLs)	..	24	
Access	control	lists	(ACLs)	that	prevent	access	to	unauthorized users.	 	24	
6.3.3	Using	the	version	control	software	...	24	
Version	control	software	to	assure	that	the	code	built	is	of	the	right	version.	 	24	
6.3.4	Build	automation	...	24	
6.3.5	Code	signing	routine	..	24	

7			Phase	4:	Security	testing	..	25	
7.1	Attack	surface	validation	..	25	
7.1.1	Post-development	testing	...	25	
7.1.2	Perform	security	testing	using	security	testing	methods	..	25	
7.1.3	Perform	software	security	testing	for	quality	assurance	..	25	

7.2	Test	data	management	..	26	
7.2.1	Identify	output	test	data	to	confirm	software	requirements	...	26	
7.2.2	Apply	testing	with	synthetic	transactions	..	26	
7.2.3	Test	data	management	solutions	...	26	
7.2.4	Defect	reporting	and	tracking	 	...	27	

8			Phase	5:	Security	deployment	..	27	
8.1	Software	acceptance	considerations	..	27	
8.1.1	Completion	criteria	...	27	
8.1.2	Change	management	..	27	
8.1.3	Approval	to	deploy	or	release	 	..	28	
8.1.4	Risk	acceptance	and	exception	policy	 	...	28	
8.1.5	Documentation	of	software	...	28	

8.2	Verification	and	validation	(V&V)	...	28	
8.2.1	Reviews	...	28	
8.2.2	Testing	..	28	

8.3	Certification	and	accreditation	(C&A)	..	29	
8.3.1	Obtain	certification	...	29	
8.3.2	Obtain	accreditation	 	...	29	

8.4	Installation	...	29	
8.4.1	Hardening	..	29	
8.4.2	Environment	configuration	...	30	
8.4.3	Release	management	 	..	30	
8.4.4	Bootstrapping	and	secure	startup	 	..	30	

9			Phase	6:	Security	maintenance	..	30	
9.1	Operations,	monitor	and	maintenance	..	30	
9.1.1	Carry	out	the	operations	security	..	31	
9.1.2	Continuous	monitoring	...	31	
9.1.3	Audit	for	monitoring	..	31	

9.2	Incident	management	..	31	
9.2.1	Determine	events,	alerts,	and	incidents	..	31	
9.2.2	Identify	types	of	incidents	..	32	
9.2.3	Incident	response	process	...	32	

9.3	Problem	management	..	32	

																		MyVAC-3-GUI-2-SSDLC-v1	

	 v	

9.3.1	Incident	notification	...	32	
9.3.2	Root	cause	analysis	...	33	
9.3.3	Solution	determination	...	33	
9.3.4	Request	for	change	...	33	
9.3.5	Implement	solution	..	33	
9.3.5	Monitor	and	report	...	33	

9.4	Change	management	..	33	
9.4.1	Patch	and	vulnerability	management	..	33	
9.4.2	Backups,	recovery	and	archiving	...	34	

9.5	Disposal	...	34	
9.5.1	End-of-Life	policies	...	34	
9.5.2	Sun-setting	criteria	...	34	
9.5.3	Sun-setting	processes	..	35	
9.5.4	Information	disposal	and	media	sanitization	...	35	

10			SSDLC	Checklist	...	36	
10.1	Phase	1:	Security	Requirements	(4)	...	36	
10.2	Phase	2:	Secure	Design	(5)	...	37	
10.3	Phase	3:	Security	Development	(6)	...	38	
10.4	Phase	4:	Security	Testing	(7)	..	39	
10.5	Phase	5:	Security	Deployment	(8)	...	40	
10.6	Phase	6:	Security	Maintenance	(9)	..	40	

Annex	A	..	42	

Annex	B	..	44	
Annex	C	..	47	

Annex	D	..	49	

Annex	E	..	50	
Bibliography	..	52	

Acknowledgements	...	54	
	
	
	 	
										

																		MyVAC-3-GUI-2-SSDLC-v1	

 1	

1 Introduction	

This	document	provides	a	guideline	for	Secure	Software	Development	Life	Cycle	(SSDLC)	to	highlight	the	
security	tasks	for	each	phase	involves	in	the	development	processes.	SSDLC	consists	of	six	(6)	phases;	
there	 are	 security	 requirement,	 security	 design,	 security	 development,	 security	 testing,	 security	
deployment,	 and	 security	maintenance	 phases.	 This	 guideline	 describes	 security	 information	 such	 as	
security	 tasks,	 which	 incorporate	 into	 every	 phase	 in	 producing	 secure	 software	 to	 ensure	 the	
confidentiality,	integrity,	and	availability	of	their	information	systems.	

The	applying	of	 security	 tasks	 into	 the	development	 life	 cycle	are	become	vital	 and	needed	 to	 clarify	
several	problems.	The	high	costs	of	remediation	whenever	the	vulnerabilities	have	been	identified	after	
the	deployment	of	the	software	become	the	major	problem	to	the	organization.	As	consequences,	it	will	
be	related	to	a	breach	and	then	give	effect	to	an	organization.	Therefore,	the	organization	needs	to	ensure	
the	appropriate	security	controls	with	security	tasks	are	in	place	throughout	the	development	life	cycle.	
The	organization	should	plan	 for	security	 to	 incorporate	security	 from	the	beginning	of	any	software	
development.	The	organization	has	assured	the	appropriate	security	tasks	included	in	the	design	phase	
to	meet	the	requirement	phase.	The	processes	continue	for	the	development	of	software	securely	and	
assure	 the	 security	 requirements	 have	 been	 met	 during	 implementation.	 The	 organization	 should	
conduct	ongoing	reviews	to	maintain	the	appropriate	level	of	security	in	the	deployed	software.								

This	 guideline	 will	 suggest	 several	 security	 tasks	 of	 controls	 to	 ensure	 the	 development	 of	 secure	
software	from	the	earlier	processes.	Organizations	can	take	this	SSDLC	guideline	to	use	it	as	a	blueprint	
to	apply	the	security	control	in	all	phases	involved	in	secure	software	development	processes.				

1.1 Scope	

This	 document	 provides	 guideline	 for	 specific	 security	 tasks	 of	 each	 phase	 in	 Secure	 Software	
Development	Life	Cycle	 (SSDLC)	 for	 the	 target	 audience	 in	 incorporating	 the	 security	 features	 in	 the	
development	of	 software.	The	guideline	only	 focuses	on	 the	development	of	 secure	software	 for	web	
applications,	which	assume	that	the	usage	of	components	or	codes	or	frameworks	for	developments	is	
under	a	controlled	environment.	In	addition,	the	secure	software	also	developed	not	included	the	cloud-
based	and	external	or	third-party	environments.	

This	document	gives	guidance	to	individuals	and	organizations	with	respect	to	common	security	tasks	
throughout	the	six	(6)	phases	involves	in	SSDLC.	The	phases	are	security	requirement,	security	design,	
security	 development,	 security	 testing,	 security	 deployment,	 and	 security	 maintenance	 phases.	 The	
selection	of	appropriate	security	tasks	will	assist	target	audiences	in	minimizing	the	potential	risks	in	
software	development.	The	common	example	architecture	of	secure	software	(Figure	A-1)	and	example	
of	secure	software	architectures	with	protection	controls	to	be	developed	(Figure	A-2)	can	be	referred	to	
in	 Annex	 A.	 	 The	 provided	 security	 tasks	 describe	 the	 importance	 and	 relevancy	 of	 the	 steps	 to	 be	
conducted	in	all	phases.	Moreover,	the	guideline	describes	the	knowledge	of	security	control	and	steps	
as	guidance	for	implementing	the	security	tasks.			

The	 provided	 checklist	will	 contain	 all	 security	 tasks,	 separated	 into	 six	 (6)	 different	 phases.	 Target	
audience	can	use	the	checklist	instantly	provided	that	all	the	security	tasks	have	been	followed	or	applied	
in	the	development	of	secure	software.					

	

	

																		MyVAC-3-GUI-2-SSDLC-v1	

 2	

1.2 Objective	

The	main	objective	of	this	document	is	to	provide	guideline	of	Secure	Software	Development	Life	Cycle	
(SSDLC)	for	the	target	audience	in	ensuring	the	security	features	are	integrated	into	the	development	of	
secure	software.	The	specific	objectives	are:	

a) To	provide	security	tasks	for	each	phase	of	SSDLC	for	the	target	audience	to	ensure	the	development	
of	secure	software.	

b) To	provide	the	checklist	of	security	tasks	as	a	quick	guide	for	the	target	audience	in	applying	the	
SSDLC.	

1.3 Intended	audience	

This	guideline	is	created	for	the	use	of	a	wide	range	of	audiences	for	information	systems	and	information	
security	professionals	 including	 i)	 individuals	with	 information	 security	management	 responsibilities	
(e.g.,	 project	 managers,	 information	 security	 officers),	 which	 usually	 range	 from	 early	 to	 end	
development	 phases;	 ii)	 individuals	 development	 responsibilities	 (e.g.,	 software	 developers,	
programmers,	 software	analyst,	 software	architects),	which	usually	range	 from	design	 to	deployment	
phases;	iii)	other	related	stakeholders	(software	owners,	consultant,	auditors),	which	usually	involve	at	
early	or	end	development	phases.		

	

2 Terms,	definitions,	abbreviated	terms	and	acronyms	

2.1 Terms	and	Definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	as	the	following	apply.	
	
2.1.1	
Access	control		
means	 to	 ensure	 that	 access	 to	 assets	 is	 authorized	 and	 restricted	 based	 on	 business	 and	 security	
requirements	
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.2	
Authentication	
provision	of	assurance	that	a	claimed	characteristic	of	an	entity	is	correct	
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.3	
Availability 	
property	of	being	accessible	and	usable	upon	demand	by	an	authorized	entity		
	
[ISO/IEC	27000:	2014(E)]	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 3	

2.1.4	
Confidentiality 	
property	 that	 information	 is	not	made	available	or	disclosed	 to	unauthorized	 individuals,	 entities,	 or	
processes		
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.5	
Integrity	
property	of	accuracy	and	completeness	
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.6	
Objective	
result	to	be	achieved	
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.7	
Risk	
effect	of	uncertainty	on	objectives	(5.6)	
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.8	
Process	
set	of	interrelated	or	interacting	activities	which	transforms	inputs	into	outputs		
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.9	
Risk	treatment	
process	(5.8)	to	modify	risk	(5.7)		
	
[ISO/IEC	27000:	2014(E)]	
	
2.1.10	
Residual	risk	
risk	(5.7)	remaining	after	risk	treatment	(3.72)	
	
[ISO/IEC	27000:	2014(E)]	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 4	

2.1.11	
Risk	assessment	
process	of	 identifying	 the	risks	 to	system	security	and	determining	 the	probability	of	occurrence,	 the	
resulting	impact,	and	additional	safeguards	that	would	mitigate	this	 impact.	Part	of	Risk	Management	
and	synonymous	with	Risk	Analysis	
	
[NIST	Special	Publication	800-30]	
	
2.1.12	
Spoofing		
“Identity	spoofing”	 is	a	key	risk	 for	applications	 that	have	many	users	but	provide	a	single	execution	
context	 at	 the	 application	 and	database	 level.	Users	 should	not	 be	 able	 to	 become	 any	other	 user	 or	
assume	the	attributes	of	another	user	
	
[OWASP	Code	Review	Guide	Version	2.0.]	

	
2.1.13	
Tampering		
users	can	potentially	change	data	delivered	to	them,	return	it,	and	thereby	potentially	manipulate	client-
side	validation,	GET	and	POST	results,	cookies,	HTTP	headers,	and	so	forth.	The	application	should	also	
carefully	check	data	received	from	the	user	and	validate	that	it	is	sane	and	applicable	before	storing	or	
using	it	
	
[OWASP	Code	Review	Guide	Version	2.0.]	
	
2.1.14	
Repudiation		
users	may	dispute	transactions	if	there	is	insufficient	auditing	or	recordkeeping	of	their	activity	
	
EXAMPLE	If	a	user	says	they	did	not	make	a	financial	transfer,	and	the	functionality	cannot	track	his/her	
activities	through	the	application,	then	it	is	extremely	likely	that	the	transaction	will	have	to	be	written	
off	as	a	loss	
	
[OWASP	Code	Review	Guide	Version	2.0.]	
	
2.1.15	
Information	disclosure		
users	are	rightfully	wary	of	submitting	private	details	to	a	system.	It	is	possible	for	an	attacker	to	publicly	
reveal	user	data	at	large,	whether	anonymously	or	as	an	authorized	user	
	
[OWASP	Code	Review	Guide	Version	2.0.]	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 5	

2.1.16	
Denial	of	Service		
application	designers	should	be	aware	that	their	applications	may	be	subject	to	a	denial	of	service	attack.	
The	use	of	expensive	resources	such	as	 large	files,	complex	calculations,	heavy-duty	searches,	or	 long	
queries	should	be	reserved	for	authenticated	and	authorized	users,	and	not	available	to	anonymous	users	
	
[OWASP	Code	Review	Guide	Version	2.0.]	
	
2.1.17	
Elevation	of	privilege		
if	an	application	provides	distinct	user	and	administrative	roles,	then	it	is	vital	to	ensure	that	the	user	
cannot	elevate	his/her	role	to	a	higher	privilege	one	
	
[OWASP	Code	Review	Guide	Version	2.0.]	
	
2.2 Abbreviated	terms	and	acronyms	
CSM	 CyberSecurity	Malaysia		
DoS	 Denial	of	Service		
DREAD	 Damage,	Reproducibility,	Exploitability,	Affected	Users,	and	

Discoverability	
EOL	 End-of-Life	
FIPS	 Federal	Information	Processing	Standards	
IPL	 Initial	Program	Load	
MyCC	 Malaysia	Common	Criteria	
NIST	 National	Institute	Standard	Technology	
NT	 New	Technology		
NTLM	 New	Technology	LAN	Manager	
OWASP	 Open	Web	Application	Security	Project	
POST	 Power-on	self-test	
SANS	 SysAdmin,	Audit,	Network	and	Security	
SDLC	 Software	Development	Life	Cycle	
SSDLC	 Secure	Software	Development	Life	Cycle	
STRIDE	 Spoofing,	Tampering,	Repudiation,	Information	Disclosure,	Denial	

of	Service,	and	Elevation	of	Privilege	
WAF	 Web	application	firewall		
	

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 6	

3 Secure	Software	Development	Life	Cycle	(SSDLC)	

Secure	Software	Development	Life	Cycle	(SSDLC)	follows	an	iterative	process	of	phases	such	as	security	
requirement,	security	design,	security	development,	security	testing,	security	deployment,	and	security	
maintenance.	Furthermore,	the	SSDLC	methodology	adapts	the	security	controls	to	the	project	life	cycle	
to	produce	secure	software.		

The	main	 purpose	 of	 SSDLC	methodology	 is	 to	 confirm	 the	 presence	 of	 essential	 components	 in	 the	
environment	 of	 the	 software	 are	 secure,	 starting	 from	 the	 earlier	 phase	 of	 this	 secure	 software	
development	processes.	SSDLC	also	necessitates	for	cost	savings	from	the	early	integration	of	security	
within	the	SDLC,	which	could	help	avoid	expensive	design	flaws	and	increase	the	long-term	viability	of	
software	projects.			

This	guideline	provides	several	specific	security	tasks	required	for	each	phase	of	SSDLC	methodology.	
These	are	the	common	security	controls	involved	in	developing	secure	software.	Figure	1	below	presents	
the	security	tasks	of	SSDLC	phases.		

	

Figure	1:	Security	Tasks	of	SSDLC	Phases	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 7	

Developing	secure	software	with	SSDLC	is	about	the	processes	of	handling	and	managing	risks	from	the	
early	 phase,	 the	 security	 requirement	 phase,	 which	 viewed	 as	 a	 non-functional	 requirement	 called	
software	requirements	specifications	documents.	The	security	software	specifications	will	be	translated	
into	architectural	blueprints,	 and	 identifying	control	based	on	risks	will	be	conducted	 in	 the	security	
design	phase.	Meanwhile,	in	the	security	development	phase	will	use	the	architectural	blueprints	to	code	
the	software	and	apply	secure	coding	to	protect	software	and	data.	In	security	testing	phase	will	validate	
and	verify	the	functionality	and	security	of	software	based	on	the	requirement	specification.	Followed	by	
security	 deployment	 phase,	 the	 verification	will	 be	 conducted	 to	 ensure	 that	 the	 software	meets	 the	
specified	functional	and	assurance	requirements.	Finally,	in	security	maintenance	phase	will	monitoring	
ongoing	operations.	Maintenance	includes	addressing	incidents	impacting	the	software	and	patching	the	
software	to	mitigate	its	chances	of	being	exploited	by	hackers	and	malware	threats.		

	

4 Phase	1:	Security	requirements	

Objectives	

a) To	identify	and	define	relevant	security	requirements	for	the	software	developed.	
b) To	 identify	 security	 preparation	 for	 software	 development.	 To	 elicit	 protection	 needs	 using	 data	

classification,	use	and	misuse	case	modeling,	and	risk	management.	 	

There	 are	 four	 (4)	 types	 of	 security	 tasks,	 which	 are	 i)	 sources	 for	 security	 requirement;	 ii)	 data	
classification;	iii)	use	case	and	misuse	case	modeling;	iv)	risk	management;	should	be	considered	by	the	
audience	 to	accomplish	 the	security	requirement	phase.	The	details	will	be	provided	 in	 the	next	sub-
section:	

4.1	Sources	of	security	requirements		

Objectives	

a) To	explicitly	define	and	address	security	objectives	or	goals	of	the	organization.		
b) To	identify	requirements	that	are	applicable	to	business	context	and	software	functionalities	serving	

the	context.	 	

Implementation	guide	

4.1.1	Identify	core	security	requirements	

a) Confidential	requirements	
To	 address	 protection	 against	 the	 unauthorized	 disclosure	 of	 data	 or	 information	 that	 is	 either	
private	or	sensitive	in	nature.	Confidentiality	protection	mechanisms	are	such	as	follows:	
	
i) Cryptographic	is	a	protection	mechanism	in	which	the	goal	is	to	prevent	the	disclosure	of	the	
information	deemed	secret.	The	types	of	mechanisms	include:		

(1) overt1	mechanisms,	such	as	encryption	and	hashing.	The	goal	of	overt	secret	writing	is	to	
make	the	information	humanly	indecipherable	or	unintelligible	even	if	disclosed.	

(2) covert2	mechanisms,	such	as	steganography	and	digital	watermarking.	The	goal	of	covert	
secret	writing	is	to	hide	information	within	itself	or	in	some	other	media	or	form.	
	
	

	
1	Overt-	[Over]	Over	and	above	all.	Out	in	the	open,	obvious,	for	all	to	see,	not	hidden.	
2	Covert-	[Cover]	Hidden,	camouflaged,	cryptic.	UNDER	COVER.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 8	

ii) Masking	 is	 a	 weaker	 form	 of	 confidentiality	 protection	 mechanism	 in	 which	 the	 original	
information	is	either	asterisked	or	X’ed	out.	This	is	primarily	used	to	protect	against	shoulder	
surfing	 attacks,	 which	 are	 characterized	 by	 someone	 looking	 over	 another’s	 shoulder	 and	
observing	sensitive	information.	The	masking	of	credit	card	numbers,	except	for	the	last	four	
digits	when	printed	on	receipts	or	displayed	on	a	screen,	is	an	example	of	masking	providing	
confidentiality	protection.		

Confidentiality	requirements	need	to	be	defined	throughout	the	information	life	cycle	from	the	origin	
of	 the	 data	 in	 question	 to	 its	 retirement.	 It	 is	 necessary	 to	 explicitly	 state	 confidentiality	
requirements	for	non-public	data:		

i) In	Transit:	When	the	data	is	transmitted	over	unprotected	networks,	i.e.,	data-in-motion.		
ii) In	Processing:	When	the	data	is	held	in	computer	memory	or	media	for	processing	 	
iii) In	Storage:	When	the	data	is	at	rest,	within	transactional	systems	as	well	as	non-transactional	

systems,	including	archives,	i.e.,	data-at-rest.	 	

Confidentiality	requirements	may	also	be	time-bound.	 	

b) Integrity	requirements	
To	address	two	primary	areas	of	software	security,	namely,	reliability	assurance	and	protection	or	
prevention	 against	 unauthorized	 modifications.	 Integrity	 refers	 not	 only	 to	 the	 software	
modification	 protection	 (system	 integrity)	 but	 also	 the	 data	 that	 the	 software	 handles	 (data	
integrity).		
	
Reliability	 –	 essentially	 refers	 to	 ensuring	 that	 the	 software	 is	 functioning	 as	 it	 is	 designed	 and	
expected	to.	It	 is	also	meant	to	provide	security	controls	that	will	ensure	that	the	accuracy	of	the	
software	and	data	is	maintained.	Integrity	protection	also	takes	into	consideration	the	completeness	
and	consistency	of	the	software	or	data	that	the	software	handles.		

	
c) Availability	requirements	

To	ensure	that	 there	 is	no	disruption	to	business	operations.	Availability	requirements	are	 those	
software	requirements	that	ensure	the	protection	against	destruction	of	the	software	and/or	data,	
thereby	assisting	in	the	prevention	against	Denial	of	Service	(DoS)	to	authorized	users.		

	
d) Authentication	requirements	

To	verify	and	assure	the	legitimacy	and	validity	of	the	identity	that	is	presenting	entity	claims	for	
verification.	 Authentication	credentials	could	be	provided	by	different	factors	or	a	combination	of	
factors	that	include	knowledge,	ownership,	or	characteristics.		
	
Two-factor	 authentication	 –	 when	 two	 factors	 are	 used	 to	 validate	 an	 entity’s	 claim	 and/or	
credentials.	Multi-factor	authentication	–	when	more	than	two	factors	are	used	for	authentication. 	
	
The	most	common	forms	of	authentication	are	as	below:	
	
i) Anonymous	authentication	 is	the	means	of	access	to	public	areas	of	your	software	without	

prompting	for	credentials	such	as	username	and	password.	 	
ii) Basic	authentication	 is	one	of	 the	HyperText	Transport	Protocol	 (HTTP)	1.0	specifications,	

which	is	characterized	by	the	client	browser	prompting	the	user	to	supply	their	credentials.	 	
iii) Digest	authentication	is	a	challenge/response	mechanism,	which	unlike	Basic	authentication,	

does	not	send	the	credentials	over	the	network	in	cleartext	or	encoded	form,	but	instead	sends	
a	message	digest	(hash	value)	of	the	original	credential.	 	

iv) Integrated	 authentication	 is	 commonly	 known	 as	 New	 Technology	 LAN	Manager	 (NTLM)	
authentication	 or	 New	 Technology	 (NT)	 challenge/response	 authentication,	 like	 Digest	
authentication,	the	credentials	are	sent	as	a	digest.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 9	

v) Client	 certificate-based	 authentication	 works	 by	 validating	 the	 identity	 of	 the	 certificate	
holder.	These	certificates	are	issued	to	organizations	or	users	by	a	certification	authority	(CA)	
that	vouches	for	the	validity	of	the	holder.		

vi) Forms	authentication	requires	the	user	to	supply	a	username	and	password	for	authentication	
purposes,	and	these	credentials	are	validated	against	a	directory	store,	which	can	be	the	active	
directory,	a	database	or	configuration	file.		

vii) Token-based	 authentication	 is	 usually	 used	 in	 conjunction	 with	 forms	 for	 authentication	
where	 a	 username	 and	 password	 are	 supplied	 for	 verification.	 Upon	 verification,	 a	 token	 is	
issued	 to	 the	 user	 who	 supplied	 the	 credentials.	 The	 token	 is	 then	 used	 to	 grant	 access	 to	
resources	that	are	requested.	This	way,	the	username,	and	password	need	not	be	passed	on	each	
call.		

viii) Smart	card-based	authentication	provides	the	ownership	(something	you	have).	They	contain	
a	programmable	embedded	microchip	that	is	used	to	store	the	authentication	credentials	of	the	
owner.		

ix) Biometric	authentication	uses	biological	characteristics	(something	you	are)	for	providing	the	
identity’s	credentials.	Biological	features	such	as	retinal	blood	vessel	patterns,	facial	features,	
and	fingerprints	are	used	for	identity	verification	purposes.	

	
e) Authorization	requirements		

To	confirm,	an	authenticated	entity	has	the	needed	rights	and	privileges	to	access	and	perform	
actions	on	a	requested	resource.		
	
Identify	the	subjects	and	objects.	Subjects	are	the	entities	that	are	requesting	access,	and	Objects	are	
the	items	that	the	subject	will	act	upon.	A	subject	can	be	a	human	user	or	a	software	process.	Action	
on	objects	needs	to	be	explicitly	captured,	commonly	are	Create,	Read,	Update,	or	Delete	(CRUD)	
data	operations.		
	
The	access	control	models	to	apply	are	primarily	of	the	following	types:		
	
i) Discretionary	Access	Control	(DAC)	–	restricting	access	to	objects	based	on	the	 identity	of	

subjects	and/or	groups	to	which	they	belong.	DAC	is	implemented	either	by	using	identities	or	
roles.	 DAC	 is	 often	 observed	 to	 be	 implemented	 by	 using	 access	 control	 lists	 (ACLs),	 the	
relationship	between	 the	 individuals	 (subjects)	and	 the	 resources	 (objects)	 is	direct	and	 the	
mapping	of	individuals	to	resources	by	the	owner.	

ii) Non-Discretionary	 Access	 Control	 (NDAC)	 –	 characterized	 by	 the	 software	 enforcing	 the	
security	policies.	It	does	not	rely	on	the	subject’s	compliance	with	security	policies.	The	non-
discretionary	aspect	is	that	it	is	unavoidably	imposed	on	all	subjects.		

iii) Mandatory	Access	Control	 (MAC)	 –	access	 to	objects	 is	 restricted	 to	subjects	based	on	 the	
sensitivity	of	the	information	contained	in	the	objects.	The	sensitivity	is	represented	by	the	label.	
Only	subjects	that	have	the	appropriate	privilege	and	formal	authorization	(i.e.,	clearance)	are	
granted	access	to	the	objects.		

iv) Role-Based	Access	Control	(RBAC)	–	individuals	(subjects)	have	access	to	a	resource	(object)	
based	on	their	assigned	role.	Permissions	to	operate	on	objects	such	as	Create,	Read,	Update,	or	
Delete	are	also	defined	and	determined	based	on	responsibilities	and	authority	(permissions)	
within	the	job	function.		

v) Resource-Based	Access	Control	–	access	be	granted	based	on	the	resources.	Resource-based	
access	control	models	are	useful	in	architectures	that	are	distributed	and	multi-tiered,	including	
service-oriented	architectures.		

vi) Accountability	requirements	-	to	assist	in	building	a	historical	record	of	user	actions.	Audit	
trails	can	help	detect	when	an	unauthorized	user	makes	a	change,	or	an	authorized	user	makes	
an	unauthorized	change,	both	of	which	are	cases	of	integrity	violations.		
	

Examples	of	Security	Requirements	can	be	referred	in	Annex	B.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 10	

4.1.2	Identify	general	requirements	

a) Session	Management	requirements		
Upon	successful	authentication,	a	session	identifier	(ID)	is	issued	to	the	user	and	that	session	ID	is	
used	to	track	user	behavior	and	maintain	the	authenticated	state	for	that	user	until	that	session	is	
abandoned	or	the	state	changes	from	authenticated	to	not	authenticated.	 	

b) Errors	&	Exceptions	Management	requirements		
Errors	&	exceptions	are	potential	sources	of	information	disclosure.		

c) Configuration	Parameters	Management	requirements	
Software	configuration	parameters	and	code	which	makeup	the	software	needs	protection	against	
hackers.	These	parameters	and	codes	usually	need	to	be	initialized	before	the	software	can	run.	 	
	

4.1.3	Identify	operational	requirements	

To	 identify	 requirements	 such	 as	 the	 number	 of	 database	 connections	 for	 concurrent	 access,	
interdependencies	 with	 other	 applications	 in	 the	 computing	 ecosystem,	 and	 shared	 and	 computing	
resources	required.	Identify	the	needed	capabilities	and	dependencies	of	the	software	as	it	serves	the	
business	with	their	intended	functionality.		

a) Deployment	environment	requirements		
To identify	and	capture	the	pertinent	requirements	about	the	environment	in	which	the	software	
will	be	deployed.		

b) Archiving	requirements	 	
Archives	are	maintained	either	as	a	means	 for	business	continuity	or	as	a	need	 to	comply	with	a	
regulatory	 requirement	 or	 organizational	 policy;	 the	 archiving	 requirement	 should	 be	 explicitly	
identified	and	captured.		

c) Anti-piracy	requirements	
Code	obfuscation,	code	signing,	anti-tampering,	licensing,	and	IP	protection	mechanisms	should	be	
included	as	part	of	 the	 requirements	documentation,	 especially	 if	 in	 the	business	of	building	and	
selling	commercial	software.		
	

4.1.4	Identify	other	requirements	

a) Sequencing	and	timing	requirements		
Sequencing	 and	 timing	 design	 flaws	 in	 software	 can	 lead	 to	 what	 is	 commonly	 known	 as	 race	
conditions	or	Time	of	Check/Time	of	Use	(TOC/TOU)	attacks.	Race	conditions	are,	in	fact,	one	of	the	
most	common	flaws	observed	in	software	design.		

b) International	requirements	 	
International	requirements	can	be	of	two	types	–	legal	and	technological.	 	
Legal	requirements	–	so	that	are	not	in	violation	of	any	regulations.	 	
Technological	requirements	–	to	determine	character	encoding	and	display	direction	 	

c) Procurement	requirements	
The	identification	and	determination	of	software	security	requirements	are	no	less	important	when	
a	decision	is	made	to	procure	the	software	instead	of	building	it	in-house.	The	brief	explanations	of	
the	procurement	requirements	can	be	referred	in	Annex	C.	
	

4.2	Data	classification	

Objective	

To	ensure	data	or	information	as	the	most	valuable	digital	assets	will	be	protected.		

	

																		MyVAC-3-GUI-2-SSDLC-v1	

 11	

Implementation	guide	

4.2.1Types	of	data	

To	classify	data	into	types	as	follows:	
a) Structured	data		

Referred	to	data	which	is	organized	into	the	identifiable	structure.	An	example	of	structured	data	in	
a	database	(stored	in	columns	and	rows).	

b) Unstructured	data	
Referred	to	data	that	has	no	identifiable	structure.	Examples	of	unstructured	data	include	images,	
videos,	emails,	documents,	and	text.			

4.2.2	Labeling	the	data	

Data	classification	is	an	effort	to	assign	labels	(a	level	of	sensitivity)	to	information	(data)	assets,	based	
on	 potential	 impact	 to	 confidentiality,	 integrity,	 and	 availability	 (CIA),	 upon	 disclosure,	 alteration	 or	
destruction.		

4.2.3	Data	ownership	and	roles	

Decisions	to	classify	data,	which	has	access	and	what	level	of	access,	etc.	are	decisions	that	are	to	be	made	
by	the	business/data	owner.	

4.2.4	Data	lifecycle	management	(DLM)	

A	policy-based	approach,	involving	procedures	and	practices	to	protect	data	throughout	the	information	
life	cycle:	from	the	time	it	is	created	to	the	time	it	is	disposed	or	deleted.	

4.2.5	Privacy	requirements	

Data	classification	can	help	in	identifying	data	that	will	need	to	have	privacy	protection	requirements	
applied.	Categorizing	the	data	into	privacy	tiers,	based	on	the	impact	upon	disclosure,	alteration	and/or	
destruction,	can	provide	insight	into	ensuring	that	appropriate	levels	of	privacy	controls	are	in	place.		

Best	practice	guidelines	 for	data	privacy	 that	need	 to	be	 included	 in	 software	 requirements	analysis,	
design,	and	architecture	can	be	addressed	if	one	complies	with	the	following	rules.		

a) If	you	don’t	need	it,	don’t	collect	it.	 	
b) If	you	need	to	collect	it	for	processing	only,	collect	it	only	after	you	have	informed	the	user	that	you	

are	collecting	their	information,	and	they	have	consented,	but	don’t	store	it.	 	
c) If	you	have	the	need	to	collect	it	for	processing	and	storage,	then	collect	it,	with	user	consent,	and	

store	 it	only	 for	an	explicit	 retention	period	 that	 is	 compliant	with	organizational	policy	and/	or	
regulatory	requirements.	 	

d) If	 you	 have	 the	 need	 to	 collect	 it	 and	 store	 it,	 then	 don’t	 archive	 it,	 if	 the	 data	 has	 outlived	 its	
usefulness	and	there	is	no	retention	requirement.	

Privacy	requirements	and	controls	are	as	below:	
	
a) Data	anonymization	–	By	permanently	and	completely	removing	personal	 identifiers	 from	data,	

anonymity	can	be	assured.	Anonymization	is	the	process	of	removing	private	information	from	the	
data.	Anonymized	data	cannot	be	linked	to	any	one	individual	account.		
The	anonymization	 techniques	are	useful	 to	assure	data	privacy	are	replacement	(also	known	as	
substitution),	 suppression	 (also	 known	 as	 omission),	 generalization	 (specific	 identifiable	

																		MyVAC-3-GUI-2-SSDLC-v1	

 12	

information	 is	 replaced	 using	 a	 more	 generalized	 form),	 and	 perturbation	 (also	 known	 as	
randomization,	that	involves	making	random	changes	to	the	data).		

b) Disposition	–	All	software	is	vulnerable	until	it	and	the	data	it	processes,	transmits,	and	stores	is	
disposed	in	a	secure	manner.	This	is	particularly	of	great	importance	if	the	data	is	sensitive	and/or	
personally	identifiable.		
Most	privacy	regulations	require	the	implementation	of	policies	and	procedures	to	address	the	final	
disposition	 of	 private	 information	 and/or	 the	 sanitization	 of	 electronic	 hardware	 and	media	 on	
which	it	is	stored	before	the	hardware	is	re-provisioned	for	re-use.		
	

c) Security	models	 –	 a	 formal	 abstraction	 of	 the	 security	 policy	which	 is	 comprised	 of	 the	 set	 of	
security	 requirements	 that	 needs	 to	 be	part	 of	 the	 software,	 so	 that	 it	 is	 resistant	 to	 attack,	 can	
tolerate	the	attacks	that	cannot	be	resisted	and	can	recover	quickly	 from	the	undesirable	state	 if	
compromised.	
	

d) Pseudonymization	–	 is	a	data	management	and	de-identification	procedure	by	which	personally	
identifiable	information	fields	within	a	data	record	are	replaced	by	one	or	more	artificial	identifiers	
or	pseudonyms.	A	single	pseudonym	for	each	replaced	field	or	collection	of	replaced	fields	makes	
the	data	record	less	identifiable	while	remaining	suitable	for	data	analysis	and	data	processing.	

An	organization	should	also	consider	the	privacy	legislation	such	as	in:	
	
a) Malaysia,	which	is	the	Laws	of	Malaysia,	Act	709,	Personal	Data	Protection	Act	2010	(PDPA).		
b) The	United	States,	which	are	the	U.S.	Privacy	laws	–	Privacy	Act	(5	USC	552a),	the	consumer	credit	is	

addressed	 in	 the	 Fair	 Credit	 Reporting	 Act,	 healthcare	 information	 in	 the	 Health	 Insurance	
Portability	and	Accountability	Act	 (HIPAA),	 financial	 service	organizations	 in	 the	Gramm–Leach–
Bliley	Act	(GLBA),	children’s	web	access	in	the	Children’s	Online	Privacy	Protection	Act	(COPPA),	and	
student	records	in	the	Federal	Educational	Rights	and	Privacy	Act).		

c) Non-U.S.	 Privacy	 principles,	 such	 as	 for	 European	 countries	 which	 is	 the	 European	 Union	 (EU)	
General	Data	Protection	Regulation	(GDPR).	

	

4.3	Use	case	and	misuse	case	modeling	

Objective	

To	identify	possible	misbehavior	and	recommend	relevant	security	requirements	based	on	functionality	
for	developed	software.	

Implementation	guide	

4.3.1	Analyze	the	use	case	scenarios		

To	 identify	 the	 behavior	 of	 the	 software.	 The	 use	 case	 describes	 behavior	 that	 the	 software	 owner	
intended.	 Use	 case	modeling	 and	 diagramming	 is	 very	 useful	 for	 specifying	 requirements.	 It	 can	 be	
effective	 in	 reducing	 ambiguous	 and	 incompletely	 articulated	 business	 requirements	 by	 explicitly	
specifying	exactly	when	and	under	what	conditions	certain	behavior	occurs.		

Use	case	modeling	includes	identifying	actors,	 intended	software	behavior	(use	cases),	and	sequences	
and	relationships	between	the	actors	and	the	use	cases.	Actors	may	be	an	individual,	a	role,	or	a	non-
human	in	nature.	

Actors	 are	 represented	 with	 stick	 people	 and	 use	 case	 scenarios	 by	 ellipses	 when	 the	 use	 case	 is	
diagrammatically	represented.	Arrows	that	represent	the	interactions	or	relationships	connect	the	use	
cases	and	the	actors.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 13	

4.3.2	Analyze	the	misuse	case	scenarios		

To	 identify	 weaknesses	 that	 to	 become	 a	 threat.	 Misuse	 cases	model	 negative	 scenarios.	 A	 negative	
scenario	is	an	unintended	behavior	of	the	software,	one	that	the	software	owner	does	not	want	to	occur	
within	the	context	of	the	use	case.	Misuse	cases	provide	insight	into	the	threats	that	can	occur	against	the	
software.		

In	misuse	case	modeling,	mis-actors,	and	unintended	scenarios	or	behavior	are	modeled.	Misuse	cases	
may	be	intentional	or	accidental.	Misuse	cases	can	be	created	through	brainstorming	negative	scenarios	
like	an	attacker.				

4.3.3	Creating	attack	model	

To	create	an	attack	model	with	explicit	consideration	of	known	attacks	or	attack	types.	Given	a	set	of	
requirements	and	a	list	of	threats,	the	idea	here	is	to	cycle	through	a	list	of	known	attacks	one	at	a	time	
and	to	think	about	whether	the	"same"	attack	applies	to	the	software.	To	create	an	attack	model,	do	the	
following:		

a) Select	 those	 attack	 patterns	 relevant	 to	 the	 software.	 Build	 misuse	 cases	 around	 those	 attack			
patterns.	

b) Include	anyone	who	can	gain	access	to	the	software	because	threats	should	encompass	all	potential	
sources	of	danger	to	the	software.	 	

4.3.4	Select	mitigation	control	

To	propose	mitigation	controls	based	on	attack	identified	from	the	previous	step.	Highlight	the	point	by	
proposing	the	security	control;	it	helps	in	addressing	security	requirement.	

Figure	D-1	depicts	a	use	case,	and	misuse	case	examples	are	shown	in	Annex	D.	

4.4	Risk	management	

Objectives	

a) To	enable	securing	the	software	that	store,	process,	or	transmit	organizational	information;		
b) To	 enable	 the	 management	 to	 make	 well-informed	 risk	 management	 decisions	 to	 justify	 the	

expenditures	that	are	part	of	a	software	budget;	and		
c) To	 assist	 the	management	 in	 authorizing	 (or	 accrediting)	 the	 software	 based	 on	 the	 supporting	

documentation	resulting	from	the	performance	of	risk	management.	

Implementation	guide	

4.4.1	Risk	assessment	

To	determine	the	extent	of	the	potential	threat	and	the	risk	associated	with	the	software	throughout	its	
SSDLC.	 To	 identify	 appropriate	 controls	 for	 reducing	 or	 eliminating	 risk	 during	 the	 risk	 mitigation	
process.	

The	risk	assessment	methodology	encompasses	nine	(9)	primary	steps,	whereby	steps	2,	3,	4,	and	6	can	
be	conducted	in	parallel	after	Step	1	has	been	completed.	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 14	

The	steps	are	as	below:	
	
a) Step	1	–	System	Characterization		

To	define	the	scope	of	the	effort.	In	this	step,	the	boundaries	of	the	software	are	identified,	along	with	
the	resources	and	the	information	that	constitutes	the	system.	Characterizing	software	establishes	
the	scope	of	the	risk	assessment	effort,	delineates	the	operational	authorization	(or	accreditation)	
boundaries	and	provides	information	(e.g.,	hardware,	software,	system	connectivity,	and	responsible	
division	or	support	personnel)	essential	to	defining	the	risk.	
	

b) Step	2	–	Threat	Identification		
To	 identify	 the	 potential	 threat-sources	 and	 compile	 a	 threat	 statement	 listing	 potential	 threat-
sources	 that	 are	 applicable	 to	 the	 software	 being	 evaluated.	 A	 threat-source	 is	 defined	 as	 any	
circumstance	or	event	with	the	potential	to	cause	harm	to	the	software.	The	common	threat	sources	
can	be	natural,	human,	or	environmental.	
	

c) Step	3	–	Vulnerability	Identification		
The	analysis	of	the	threat	to	the	software	should	include	an	analysis	of	the	vulnerabilities	associated	
with	the	software	environment.	The	goal	of	this	step	is	to	develop	a	list	of	software	vulnerabilities	
(flaws	or	weaknesses)	that	could	be	exploited	by	the	potential	threat-sources.	
	

d) Step	4	–	Control	Analysis		
i) To	analyze	the	controls	that	have	been	implemented	or	are	planned	for	implementation	by	the	

organization	 to	minimize	or	 eliminate	 the	 likelihood	 (or	probability)	of	 a	 threat’s	 exercising	
software	vulnerability.	

ii) To	derive	an	overall	likelihood	rating	that	indicates	the	probability	that	a	potential	vulnerability	
may	be	exercised	within	the	construct	of	the	associated	threat	environment	(Step	5	below),	the	
implementation	of	current	or	planned	controls	should	be	considered.	

	
e) Step	5	–	Likelihood	Determination		

To	derive	an	overall	likelihood	rating	that	indicates	the	probability	that	a	potential	vulnerability	may	
be	 exercised	within	 the	 construct	 of	 the	 associated	 threat	 environment,	 the	 following	 governing	
factors	should	be	considered:	
i) Threat-source	motivation	and	capability.	
ii) Nature	of	the	vulnerability	
iii) Existence	and	effectiveness	of	current	controls.	

	
f) Step	6	–	Impact	Analysis		

To	determine	the	adverse	impact	resulting	from	a	successful	threat	exercise	of	vulnerability.	Before	
beginning	the	impact	analysis,	it	is	necessary	to	obtain	the	following	necessary	information	as	below:	
i) System	mission	(e.g.,	the	processes	performed	by	the	software)	
ii) System	and	data	criticality	(e.g.,	the	system’s	value	or	importance	to	an	organization	
iii) System	and	data	sensitivity.	

	
g) Step	7	–	Risk	Determination		

To	assess	the	level	of	risk	for	the	software.	The	determination	of	risk	for	a	threat/vulnerability	pair	
can	be	expressed	as	a	function	of:	
i) The	likelihood	of	a	given	threat	source's	attempting	to	exercise	a	given	vulnerability	
ii) The	magnitude	of	the	impact	should	a	threat-source	successfully	exercise	the	vulnerability	
iii) The	adequacy	of	planned	or	existing	security	controls	for	reducing	or	eliminating	risk.	

	
	

h) Step	8	–	Control	Recommendations		
Controls	that	could	mitigate	or	eliminate	the	identified	risks,	as	appropriate	to	the	organization’s	
operations,	are	provided.	The	goal	of	the	recommended	controls	is	to	reduce	the	level	of	risk	to	the	

																		MyVAC-3-GUI-2-SSDLC-v1	

 15	

software	 and	 its	 data	 to	 an	 acceptable	 level.	 The	 following	 factors	 should	 be	 considered	 in	
recommending	controls	and	alternative	solutions	to	minimize	or	eliminate	identified	risks:	
i) Effectiveness	of	recommended	options	(e.g.,	system	compatibility)	
ii) Legislation	and	regulation	
iv) Organizational	policy	
v) Operational	impact	
vi) Safety	and	reliability.	

	
i) Step	9	–	Results	Documentation		

Once	the	risk	assessment	has	been	completed	(threat-sources	and	vulnerabilities	 identified,	risks	
assessed,	 and	 recommended	 controls	 provided),	 the	 results	 should	 be	 documented	 in	 an	 official	
report	or	briefing.	

A	risk	assessment	report	is	a	management	report	that	helps	senior	management,	the	mission	owners,	
make	decisions	on	policy,	procedural,	budget,	and	system	operation	and	management	changes.	Unlike	an	
audit	 or	 investigation	 report,	 which	 looks	 for	 wrongdoing,	 a	 risk	 assessment	 report	 should	 not	 be	
presented	in	an	accusatory	manner	but	as	a	systematic	and	analytical	approach	to	assessing	risk	so	that	
senior	management	will	 understand	 the	 risks	 and	 allocate	 resources	 to	 reduce	 and	 correct	 potential	
losses.	

4.4.2	Risk	mitigation		

To	prioritizing,	evaluating,	and	implementing	the	appropriate	risk-reducing	controls	recommended	from	
the	risk	assessment	process.		

a) Risk	mitigation	options	
Organizations	should	be	considered	in	selecting	any	of	these	risk	mitigation	options.	It	may	not	be	
practical	to	address	all	identified	risks,	so	priority	should	be	given	to	the	threat	and	vulnerability	
pairs	that	have	the	potential	to	cause	significant	mission	impact	or	harm.	The	risk	mitigation	options	
are:	
i) Risk	 Assumption.	 To	 accept	 the	 potential	 risk	 and	 continue	 operating	 the	 software	 or	 to	

implement	controls	to	lower	the	risk	to	an	acceptable	level.	
ii) Risk	Avoidance.	To	avoid	the	risk	by	eliminating	the	risk	cause	and/or	consequence	(e.g.,	skip	

certain	functions	of	the	software	or	shut	down	the	software	when	risks	are	identified).	
iii) Risk	Limitation.	To	limit	the	risk	by	implementing	controls	that	minimize	the	adverse	impact	of	

a	threat’s	exercising	a	vulnerability	(e.g.,	use	of	supporting,	preventive,	detective	controls).	
iv) Risk	Planning.	To	manage	risk	by	developing	a	risk	mitigation	plan	that	prioritizes,	implements,	

and	maintains	controls.	
v) Research	and	Acknowledgment.	To	lower	the	risk	of	loss	by	acknowledging	the	vulnerability	or	

flaw	and	researching	controls	to	correct	the	vulnerability.	
vi) Risk	Transference.	To	transfer	the	risk	by	using	other	options	to	compensate	for	the	loss,	such	

as	purchasing	insurance.	
	

b) Risk	mitigation	strategy	
To	provide	guidance	on	actions	to	mitigate	risks	from	intentional	human	threats:	
i) When	vulnerability	(or	flaw,	weakness)	exists	–	implement	assurance	techniques	to	reduce	the	

likelihood	of	vulnerability’s	being	exercised.	
ii) When	 a	 vulnerability	 can	be	 exercised,	 apply	 layered	protections,	 architectural	 designs,	 and	

administrative	controls	to	minimize	the	risk	of	or	prevent	this	occurrence.	
iii) When	 the	 attacker’s	 cost	 is	 less	 than	 the	 potential	 gain	 –	 apply	 protections	 to	 decrease	 an	

attacker’s	motivation	by	 increasing	 the	attacker’s	 cost	 (e.g.,	use	of	 software	controls	 such	as	
limiting	what	a	software	user	can	access	and	do	can	significantly	reduce	an	attacker’s	gain).	

iv) When	loss	is	too	great	–	apply	design	principles,	architectural	designs,	and	technical	and	non-
technical	protections	to	limit	the	extent	of	the	attack,	thereby	reducing	the	potential	for	loss.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 16	

c) Approach	for	control	implementation	
To	take	control	action	with	the	following	steps:	
i) Step	1	–	Prioritize	Actions	

Prioritize	the	implementation	actions	based	on	the	risk	levels.	
ii) Step	2	–	Evaluate	Recommended	Control	Options	

To	select	the	most	appropriate	control	option	for	minimizing	risk.	Analyze	the	feasibility	(e.g.,	
compatibility,	user	acceptance)	and	effectiveness	(e.g.,	degree	of	protection,	and	 level	of	risk	
mitigation)	of	the	recommended	control	options.		

iii) Step	3	–	Conduct	Cost-Benefit	Analysis	
To	aid	management	 in	decision	making	and	 to	 identify	 cost-effective	 controls,	 a	 cost-benefit	
analysis	is	conducted.	

iv) Step	4	–	Select	Control	
To	determine	the	most	cost-effective	control(s)	for	reducing	risk	to	the	organization’s	mission.	

v) Step	5	–	Assign	Responsibility	
To	identify	and	assign	appropriate	persons	(in-house	personnel	or	external	contracting	staff)	
who	have	the	appropriate	expertise	and	skillsets	to	implement	the	selected	control.	

vi) Step	6	–	Develop	a	Safeguard	Implementation	Plan	
To	develop	a	safeguard	implementation	plan	(or	action	plan).	

vii) Step	7	–	Implement	Selected	Control(s)	
To	implement	controls,	which	may	lower	the	risk	level	but	not	eliminate	the	risk	(residual	risk3).	
	

d) Control	categories	
To	 consider	 technical,	management,	 and	 operational	 security	 controls,	 or	 a	 combination	 of	 such	
controls,	to	maximize	the	effectiveness	of	controls	for	their	software	and	organization.	
	
Technical	security	controls	for	risk	mitigation	can	be	configured	to	protect	against	given	types	of	
threats.	These	controls	may	range	from	simple	to	complex	measures	and	usually	involve	software	
architectures,	engineering	disciplines,	and	security	packages	with	a	mix	of	hardware,	software,	and	
firmware.Management	security	controls,	in	conjunction	with	technical	and	operational	controls,	are	
implemented	 to	 manage	 and	 reduce	 the	 risk	 of	 loss	 and	 to	 protect	 an	 organization’s	 mission.	
Management	 controls	 focus	 on	 the	 stipulation	 of	 information	 protection	 policy,	 guidelines,	 and	
standards,	which	are	carried	out	through	operational	procedures	to	fulfill	the	organization’s	goals	
and	missions.	
	

e) Cost-benefit	analysis	
To	 allocate	 resources	 and	 implement	 cost-effective	 controls,	 organizations,	 after	 identifying	 all	
possible	 controls	 and	evaluating	 their	 feasibility	 and	effectiveness,	 should	 conduct	 a	 cost-benefit	
analysis	 for	each	proposed	control	to	determine	which	controls	are	required	and	appropriate	for	
their	circumstances.	
	

f) Residual	risk	
To	analyze	the	extent	of	the	risk	reduction	generated	by	the	new	or	enhanced	controls	in	terms	of	
the	reduced	threat	likelihood	or	impact.	

4.4.3	Evaluation	and	assessment	

To	emphasize	the	good	practice	and	need	for	ongoing	risk	evaluation	and	assessment.	There	should	be	a	
specific	 schedule	 for	 assessing	 and	mitigating	mission	 risks,	 but	 the	 periodically	 performed	 process	
should	also	be	flexible	enough	to	allow	changes	where	warranted,	such	as	major	changes	to	the	software	
and	processing	environment	due	to	changes	resulting	from	policies	and	new	technologies.	

	
3	Residual	risk	is	the	threat	that	remains	after	all	efforts	to	identify	and	eliminate	risk	have	been	made.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 17	

5				Phase	2:	Security	design	

Objectives	

a) To	design	a	secure	architecture	by	considering	security	elements	
b) To	 secure	 the	 software	 architecture	 by	 understanding	 and	 analyze	 threats	 against	 the	 software	

before	it	is	built.	
	

There	are	three	(3)	types	of	security	tasks,	which	are	i)	core	security	design	considerations;	ii)	additional	
design	considerations;	iii)	threat	modeling;	to	accomplish	the	security	design	phase.	The	details	will	be	
provided	in	the	next	sub-section:	

5.1	Core	security	design	considerations		

Objective	

To	design	 the	software	 to	address	 the	core	security	elements	of	 confidentiality,	 integrity,	availability,	
authentication,	authorization,	and	auditing.		

Implementation	guide	

5.1.1	Confidentiality	design		

To	assure	that	disclosure	protection	can	be	achieved	in	several	ways	using	cryptographic	and	masking	
techniques.	Masking	is	useful	for	disclosure	protection	when	data	is	displayed	on	the	screen	or	on	printed	
forms.	

Cryptographic	 is	 for	 assurance	 of	 confidentiality,	 used	 when	 the	 data	 is	 transmitted	 or	 stored	 in	
transactional	 data	 stores	 or	 offline	 archives.	 Work	 factor	 involves	 cryptographic	 protection	 is	
exponentially	dependent	on:		

a) Key	size	(length)	-	is	the	length	of	the	key	that	is	used	in	the	algorithm.		
b) Key	management	 to	protecting	 the	secrecy	of	 the	key,	which	 includes	 the	generation,	exchange,	

storage,	rotation,	archiving,	and	destruction	of	the	key.		
c) Rotation	(swapping)	of	keys	involves	the	expiration	of	the	current	key	and	the	generation,	exchange,	

and	storage	of	a	new	key.		

Encryption	algorithms	are	primarily	of	two	types:		

a) Symmetric	 algorithms	 –	 using	 a	 single	 key	 for	 encryption	 and	 decryption	 operations	 that	 are	
shared	between	the	sender	and	the	receiver.		

b) Asymmetric	algorithms	–	using	two	keys	is	to	be	held	secret	and	is	referred	to	as	the	private	key,	
while	the	other	key	is	disclosed	to	anyone	with	whom	secure	communications	and	transactions	need	
to	occur.	The	key	that	is	publicly	displayed	to	everyone	is	known	as	the	public	key.		
i) Digital	Certificates	–	which	specifies	 formats	for	the	public	key,	used	by	anyone	to	verify	the	

authenticity	of	 the	certificate	 itself	because	 it	contains	the	digital	certificate	of	 the	certificate	
authority.		

ii) Digital	Signatures	–	to	provide	identity	verification	and	ensure	that	the	data	or	message	has	not	
tampered	since	the	digital	signature	that	is	used	to	sign	the	message	cannot	be	easily	imitated	
by	someone	unless	it	is	compromised.	It	also	provides	non-repudiation.		
	

																		MyVAC-3-GUI-2-SSDLC-v1	

 18	

5.1.2	Integrity	design		

To	 assures	 that	 there	 is	 no	 unauthorized	modification	 of	 the	 software	 or	 data,	 using	 any	 one	 of	 the	
following	techniques	or	a	combination	of	the	techniques:	

a) Hashing	 (Hash	 functions)	 –	 to	 condense	 variable-length	 inputs	 into	 an	 irreversible,	 fixed-sized	
output	known	as	a	message	digest	or	hash	value.		

b) Referential	 Integrity	 –	 Integrity	 assurance	 of	 the	 data,	 especially	 in	 a	 relational	 database	
management	system	(RDBMS),	which	ensures	that	data	is	not	left	in	an	orphaned	state.	Uses	primary	
keys	and	related	foreign	keys	in	the	database	to	assure	data	integrity.		

c) Resource	Locking	 –	When	 two	concurrent	operations	are	not	allowed	on	 the	same	object	 (say	a	
record	in	the	database),	because	one	of	the	operations	locks	that	record	from	allowing	any	changes	
to	it	until	it	completes	its	operation.		

5.1.3	Availability	design		

To	achieve	destruction	and	DoS	protection	are	by	proper	coding	of	the	software.	Since	it’s	a	design	phase,	
configuration	requirements	such	as	connection	pooling,	the	use	of	cursors,	and	looping	constructs	can	be	
looked	at.	Techniques	used	to	design	the	software	for	availability	as	follows:	

a) Replication	 –	 to	 provide	 a	 single	 point	 of	 failure	 is	 characterized	 by	 having	 no	 redundancy	
capabilities,	and	this	can	undesirably	affect	end-users	when	a	failure	occurs.		

b) Failover	 –	 to	 provide	 automatic	 switching	 from	 an	 active	 transactional	 software,	 server,	 system,	
hardware	component,	or	network	to	a	standby	(or	redundant)	system.	(Switchover	is	manual)	

c) Scalability	 –	 to	 handle	 increasing	 (or	 growing)	 amount	 of	 work	 without	 degradation	 in	 its	
functionality	or	performance.		

5.1.4	Authentication	design		

To	determine	the	type	of	authentication	that	is	required	as	specified	in	the	requirements	documentation,	
consider	using	multi-factor	authentication	and	single	sign-on	(SSO).Recommended	using	multi-factor	or	
the	 use	 of	 more	 than	 one	 factor	 to	 authenticate	 a	 principal	 (user	 or	 resource)	 provides	 heightened	
security.If	there	is	a	need	to	implement	SSO,	wherein	the	principal’s	asserted	identity	is	verified	once	and	
the	verified	credentials	are	passed	on	to	other	systems	or	applications,	usually	using	tokens,	then	it	is	
crucial	to	factor	into	the	design	of	the	software	both	the	performance	impact	and	its	security.		

5.1.5	Authorization	design		

To	give	attention	to	the	impact	on	performance,	and	to	the	principles	of	separation	of	duties	and	least	
privilege.	 The	 type	 of	 authorization	 to	 be	 implemented	 according	 to	 the	 requirements	 should	 be	
determined,	such	as	roles	or	resource-based	authorization.If	roles	are	used	for	authorization,	the	design	
should	ensure	that	there	are	no	conflicting	roles	that	circumvent	the	separation	of	duties	principle.	For	
example,	a	user	cannot	be	in	a	teller	role	and	also	in	an	auditor	role	for	a	financial	transaction.	Designing	
for	authorization	can	be	accomplished	using	entitlement	management,	which	 is	about	granular	access	
control.	

Access	control	mechanism	appropriate	for	general	objects	of	unspecified	types	as	listed	below:		

a) Directory	
One	simple	way	to	protect	an	object	is	to	use	a	mechanism	that	works	like	a	file	directory.	Imagine	
we	 are	 trying	 to	 protect	 files	 (the	 set	 of	 objects)	 from	 users	 of	 a	 computing	 system	 (the	 set	 of	
subjects).	Every	file	has	a	unique	owner	who	possesses	"control"	access	rights	(including	the	rights	
to	declare	who	has	what	access)	and	to	revoke	access	to	any	person	at	any	time.	Each	user	has	a	file	
directory,	which	lists	all	the	files	to	which	that	user	has	access.																																																																																																																																																																																																																																																																																																																																																																																																																																																																

																		MyVAC-3-GUI-2-SSDLC-v1	

 19	

b) Access	Control	List	(ACL)		
There	is	one	such	list	for	each	object,	and	the	list	shows	all	subjects	who	should	have	access	to	the	
object	and	what	their	access	is.	This	approach	differs	from	the	directory	list	because	there	is	one	
access	control	list	per	object;	a	directory	is	created	for	each	subject.		

c) Access	control	matrix	
A	table	in	which	each	row	represents	a	subject,	each	column	represents	an	object,	and	each	entry	is	
the	set	of	access	rights	for	that	subject	to	that	object.		

d) Capability	
Unforgeable	(not	fake)	token,	that	gives	the	certain	rights	to	an	object.	In	theory,	a	subject	can	create	
new	objects	and	can	specify	the	operations	allowed	on	those	objects.	For	example,	users	can	create	
objects,	such	as	files,	data	segments,	or	sub	processes,	and	can	also	specify	the	acceptable	kinds	of	
operations,	such	as	read,	write,	and	execute.	But	a	user	can	also	create	completely	new	objects,	such	
as	new	data	structures,	and	can	define	types	of	accesses	previously	unknown	to	the	software.		

e) Procedure-oriented	access	control	
Imply	the	existence	of	a	procedure	that	controls	access	to	objects	(for	example,	by	performing	its	
own	user	authentication	to	strengthen	the	basic	protection	provided	by	the	basic	operating	system).	
The	procedure	forms	a	capsule	around	the	object,	permitting	only	certain	specified	accesses.		

5.1.6	Accountability	design		

To	audit	the	software	especially	in	the	event	of	a	breach,	primarily	for	forensic	purposes.	Log	data	should	
include	the	 ‘who’,	 ‘what’,	 ‘where’,	and	‘when’	aspects	of	software	operations.	As	part	of	the	 ‘who’,	 it	 is	
important	not	to	forget	the	non-human	actors	such	as	batch	processes	and	services	or	daemons.		

5.2	Additional	design	considerations		

Objective	

To	design	the	software	which	addresses	other	design	considerations	that	are	needed	when	building	the	
secure	software.		

Implementation	guide	

5.2.1	Programming	languages	

To	determine	the	programming	language	that	will	be	used	to	implement	the	design,	which	brings	with	
its	inherent	risks	or	security	benefits.	There	are	two	(2)	main	types	of	programming	languages:	

a) Unmanages	code	 –	 e.g.,	 C/C++,	 the	 execution	of	 code	 is	not	managed	by	any	 runtime	execution	
environment	but	directly	executed	by	the	operating	system.	

b) Managed	code	–	e.g.,	Java	and	.NET	(include	C#,	VB.Net),	the	execution	of	code	is	not	by	the	operating	
system	directly,	but	instead,	it	is	managed	by	the	runtime	environment.	Security	and	non-security	
services	such	as	memory	management,	exception	handling,	bound	checking,	garbage	collection,	and	
type	safety	checking	can	be	leveraged	from	the	runtime	environment,	and	security	checks	can	be	
asserted	before	the	code	executes.	

5.2.2	Data	type,	format,	range,	and	length	

To	assure	integrity	with	a	data	type,	format,	range,	and	length	for	design	considerations.	
	
a) Primitive	 or	 built-in	 data	 types	 are	 such	 as	 Character,	 Integer,	 Floating-point	 number,	 and	

Boolean.	
b) User-defined	 data	 types,	 by	 programmers,	 are	 not	 recommended	 from	 a	 security	 standpoint	

because	it	potentially	increases	the	attack	surface,	called	as	strongly	typed	programming	languages.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 20	

c) Set	of	values	and	the	permissible	operations	on	that	value	set,	which	defined	by	the	data	type.		
d) Conversion	mismatches	and	casting	or	conversion	errors	 could	be	detrimental	 to	 the	 secure	

state	of	the	software.	There	are	such	as:	
i) Widening	conversion	(expansion)	–	data	type	is	converted	from	a	smaller	size	range	to	a	larger	

size	range.	The	potential	loss	of	data	is	the	loss	of	precision.	
ii) Narrowing	conversion	(truncation)	–	data	type	is	converted	from	a	larger	size	range	to	a	smaller	

size	range.	Potentially	cause	data	loss	truncation	if	the	value	is	stored	in	the	new	data	type	is	
greater	than	its	allowed	range.	

5.2.3	Database	security	

To	ensure	reliability,	resiliency,	and	recoverability	of	software	that	depends	on	the	data	stored	in	the	
database.Impacts	of	database	security	design	are:	

a) Inference	attack	–	attacker,	obtaining	sensitive	information	about	the	database	from	presumably	
hidden	and	trivial	pieces	of	information	(legitimately	obtained	by	the	attacker)	using	data	mining	
techniques	without	directly	accessing	the	database.	

b) Aggregation	attack	–	information	at	different,	security	classification	levels,	which	are	primarily	no	
sensitive	in	isolation,	end	up	becoming	sensitive	information	when	pieced	together	as	a	whole.	

Protection	design	considerations	concerning	database	assets	are:	
	
a) Polyinstantiation	–	to	provide	several	instances	(or	versions)	of	the	database	information,	so	that	

what	is	viewed	by	a	user	is	dependent	on	the	security	clearance	or	classification	level	attributes	of	
the	requesting	user.	
It’s	a	database	security	approach	to	deal	with	problems	of	 inference	by	hiding	 information	using	
classification	labels,	and	aggregation	by	labeling	different	aggregations	of	data	separately.		

b) Database	encryption	–	to	provide	data-at-rest	encryption	is	a	preventive,	control	mechanism	that	
can	 provide	 strong	 protection	 against	 disclosure	 and	 alteration	 of	 data.	 To	 ensure	 along	 with	
database	encryption,	proper	authentication	and	access	control	protection	mechanism	exist	to	secure	
the	key	that	is	used	for	encryption.	

c) Normalization	–	is	a	formal	technique	used	to	organize	data	so	that	redundancy	and	inconsistency	
are	eliminated.	

d) Triggers	and	views	–	Triggers	are	fired	to	run	implicitly	by	the	database	when	triggering	events	
occurs.	Also,	very	useful	for	automating	and	improving	security	protection	mechanisms.	The	view	is	
the	output	of	a	query	and	is	akin	to	a	virtual	table	or	stored	query.	Views	are	dynamically	constructed	
that	 cause	 the	 data	 that	 are	 presented	 can	 be	 custom-made	 for	 users	 based	 on	 their	 rights	 and	
privileges.		

5.2.4	Interface	design	

To	apply	interface	design	considerations	when	building	the	software,	such	as	the	following:	
	
a) User	interface	–	to	support	the	security	model	and	act	as	the	mediating	program.	User	interface	

design	should	assure	disclosure	protection.	Masking	of	sensitive	information,	such	as	a	password	or	
credit	card	number	by	displaying	asterisks	on	the	screen,	is	an	example	of	a	secure	user	interface	
that	assures	confidentiality.	A	database	view	can	also	be	said	to	be	an	example	of	a	restricted	user	
interface.	

b) Application	Programming	Interfaces	(API)	–	to	communicate	from	one	software	component	with	
another	or	 for	 the	 software	 to	 interact	with	 the	underlying	operating	 system.	The	 interfaces	 are	
usually	made	available	in	a	library,	and	it	may	include	specifications	for	routines,	data	structures,	
object	classes,	and	variables.	

c) Security	Management	 Interfaces	(SMI)	 –	 to	configure	and	manage	 the	security	of	 the	software	
itself.	 These	 are	 administrative	 interfaces	 with	 high	 levels	 of	 privilege.	 SMI	 is	 used	 for	 user-

																		MyVAC-3-GUI-2-SSDLC-v1	

 21	

provisioning	tasks	such	as	adding	users,	deleting	users,	enabling	or	disabling	user	accounts,	as	well	
as	granting	rights	and	privileges	to	roles,	changing	security	settings,	configuring	audit	log	settings,	
and	audit	trails,	exception	logging,	etc.	

d) Out-of-Band	interface	–	to	allow	an	administrator	to	connect	to	a	computer	that	is	in	an	inactive	or	
shutdown	state.	

e) Log	interfaces	–	to	log	on	or	off	in	different	environments	(e.g.,	development,	test,	production,	etc.),	
which	is	a	crucial	component	of	auditing	and	when	designing	software	for	auditing.	

5.2.5	Interconnectivity	

To	explicitly	design	the	upstream	and	downstream	compatibility	of	software.	This	is	important	when	it	
comes	 to	delegation	of	 trust,	 single	sign-on	(SSO),	 token-based	authentication,	and	cryptographic	key	
sharing	between	applications.	Upstream	and	downstream	compatibility	of	software	should	be	explicitly	
designed.	

In	most	mobile	applications,	the	protection	of	the	data	on	the	client	is	left	up	to	the	application	itself,	and	
so	the	applications	should	be	designed	to	avoid	storing	any	sensitive	information	on	the	application’s	
sandboxed	environment	itself.	The	publishers	and	third-party	APIs	that	provide	cryptographic	services	
(encryption	and	decryption)	may	have	to	be	considered	to	ensure	confidentiality.	

When	data	is	stored	in	a	location	on	the	network,	the	network-attached	storage	(NAS)	device	should	be	
protected	as	well.	Only	authenticated	and	authorized	connections	to	the	NAS	should	be	designed,	and	if	
access	is	architected	to	be	restricted	by	an	IP	range	are	designed,	special	considerations	to	IP	spoofing	
threats	need	to	be	given.	

5.3	Threat	modeling	

Objective	

To	identify,	quantify,	and	address	the	security	risks	associated	with	the	software.	

Implementation	guide	

5.3.1	Step	1:	Decompose	the	software		

To	obtain	an	understanding	of	 the	software	and	how	 it	 interacts	with	external	entities.	This	 involves	
creating	use-cases	 to	understand	how	the	application	 is	used,	 identifying	entry	points	 to	see	where	a	
potential	attacker	could	interact	with	the	application,	identifying	assets,	i.e.,	items/areas	that	the	attacker	
would	be	interested	in,	and	identifying	trust	levels	which	represent	the	access	rights	that	the	software	
will	grant	to	external	entities.Items	to	consider	when	decomposing	the	software	includes:	

a) external	dependencies		
b) entry	points	(or	attack	vectors)	
c) assets		
d) determining	 the	 attack	 surface	 by	 analyzing	 the	 inputs	 (browser	 input,	 cookies,	 property	 files,	

external	processes,	data	feeds,	service	responses,	flat	files,	command	line	parameters,	environment	
variables),	data	flows	and	transactions	

e) trust	levels	
f) data	flow	analysis	
g) transaction	analysis	 (areas	 covered	are	data/input	validation	of	data	 from	all	untrusted	 sources,	

authentication,	session	management,	authorization,	cryptography	(data	at	rest	and	in	transit),	error	
handling	/information	leakage,	logging	/auditing)	

h) data	flow	diagrams	

																		MyVAC-3-GUI-2-SSDLC-v1	

 22	

5.3.2	Step	2:	Determine	and	rank	threats	

To	identify	threats	using	a	threat	categorization	methodology.	The	example	of	threat	categorization	is	
such	as	STRIDE4	can	be	used	to	defines	threat	categories	with	regards	to	the	attacker's	goals,	such	as	
auditing	 and	 logging,	 authentication,	 authorization,	 configuration	 management,	 data	 protection	 in	
storage,	and	transit,	data	validation,	and	exception	management.	

To	rank	the	threat	can	use	the	DREAD5	threat-risk	ranking	model,	methodology	to	rank	the	risk	of	the	
threat	is	to	calculate	the	average	of	numeric	values	assigned	to	risk	ranking	categories.	

5.3.3	Step	3:	Determine	countermeasures	and	mitigation.	

To	mitigate	the	vulnerability	with	the	implementation	of	a	countermeasure	of	protection	against	a	threat.	
Such	countermeasures	can	be	identified	using	threat-countermeasure	mapping	lists.	Once	a	risk	ranking	
is	assigned	to	the	threats,	it	is	possible	to	sort	threats	from	the	highest	to	the	lowest	risk,	and	prioritize	
the	mitigation	effort,	such	as	by	responding	to	such	threats	by	applying	the	identified	countermeasures.	

Examples	of	threat	modeling	can	be	referred	in	Annex	E.	

	

6				Phase	3:	Security	development	

Objectives		

a) To	apply	technology	and	process	aspects	of	writing	secure	code.	
b) To	ensure	the	security	control	defined	in	security	requirements	should	be	put	in	place	(in	the	code).	
c) To	ensure	threats	identified	from	threat	modeling	should	be	avoided	during	coding.	

There	 are	 three	 (3)	 types	 of	 security	 tasks,	 which	 include	 i)	 common	 software	 vulnerabilities	 and	
controls;	 ii)	 secure	 software	 processes;	 iii)	 securing	 build	 environments,	 to	 accomplish	 the	 security	
development	phase.	The	details	will	be	provided	in	the	next	sub-section:	

6.1	Common	software	vulnerabilities	and	controls	

Objectives	

a) To	identify	the	most	common	vulnerabilities	that	result	from	insecure	coding.	
b) To	apply	security	controls	that	should	be	put	in	place	(in	the	code)	to	resist	and	frustrate	the	actions	

of	threat	agents.	

Implementation	guide	

6.1.1	Vulnerability	databases		

To	discover	the	vulnerability	databases	or	repositories	of	known	vulnerabilities	that	have	been	found	to	
be	the	result	of	deficiencies	and	defects	in	implemented	software	(e.g.,	flaws	and	bugs).	The	most	common	
software	security	vulnerabilities	and	risks	have	been	listed	in	the	SSDLC	checklist	to	ease	the	developer	
during	development.	However,	the	organization	can	refer	to	the	current	list	of	software	vulnerabilities	
found	all	throughout	the	software	development	industry,	such	as	OWASP	Top	10	Project	or	the	Common	
Weakness	Enumeration,	CWE/25	(project	maintained	by	MITRE	and	partnered	with	SANS	Institute).			

	
4	STRIDE	means	Spoofing,	Tampering,	Repudiation,	Information	Disclosure,	Denial	of	Service,	and	Elevation	of	Privilege	
5	DREAD	means	Damage,	Reproducibility,	Exploitability,	Affected	Users,	and	Discoverability	

																		MyVAC-3-GUI-2-SSDLC-v1	

 23	

6.1.2	Defensive	coding	practices	

To	recognize,	evaluate,	and	reduce	the	attack	surface	of	 the	software	code.	This	 is	because	the	attack	
surface	has	potentially	 increased	every	 time	a	single	 line	of	code	 is	written.	Some	examples	of	attack	
surface	reduction	related	to	code	are:		

a) reducing	the	amount	of	code	and	services	that	are	executed	by	default.	 	
b) reducing	the	volume	of	code	that	can	be	accessed	by	untrusted	users.	 	
c) limiting	the	damage	when	the	code	is	exploited.	 	

The	most	common	defensive	coding	practices	and	techniques	have	been	listed	in	the	SSDLC	checklist	
to	ease	the	developer	during	development.			

6.2	Secure	software	processes	

Objective	

To	assure	the	security	of	software	by	conducted	certain	processes	as	an	addition	to	writing	secure	code.	

Implementation	guide	

6.2.1	Source	code	versioning	

To	ensure	that	the	development	team	is	working	with	the	correct	version	of	code.	Gives	the	ability	to	roll	
back	 to	 a	 previous	 version	 should	 there	 be	 a	 need	 to.	 Additionally,	 it	 provides	 the	 ability	 to	 track	
ownership	and	changes	of	code,	and	for	updated	version	purpose.	

6.2.2	Code	analysis	 	

To	perform	an	automated	process	of	inspecting	the	code	for	quality	and	weaknesses	that	can	be	exploited.	
It	is	primarily	accomplished	by	two	means;	static	and	dynamic.		

Static	code	analysis	involves	the	inspection	of	the	code	without	executing	the	code	(or	software	program).	
This	analysis	is	normally	done	by	a	third	party.	

Dynamic	code	analysis	is	the	inspection	of	the	code	when	it	is	being	executed	(run	as	a	program).	This	
analysis	is	normally	done	by	the	developer.	

6.2.3	Code	review	 	

To	perform	a	manually	systematic	evaluation	of	the	source	code	with	the	goal	of	finding	out	syntax	issues	
and	 weaknesses	 in	 the	 code	 that	 can	 impact	 the	 performance	 and	 security	 of	 the	 software.	 This	 is	
normally	done	among	the	developer.	Semantic	issues	such	as	business	logic	and	design	flaws	are	usually	
not	detected	in	a	code	review,	but	a	code	review	can	be	used	to	validate	the	threat	model	generated	in	
the	design	phase	of	the	software	development	project.		

6.2.4	Developer	testing	 	

To	perform	the	developers’	 intentional	and	systematic	employment	of	testing	tools	and	techniques	 in	
order	 to	 create	 testable	 and	 maintainable	 software	 with	 few	 defects	 as	 possible.	 Developer	 testing	
requires	 a	 structured	 approach	 and	 mastery	 of	 several	 core	 competencies,	 of	 which	 understanding	
testability	drivers,	fundamental	testing	techniques	and	unit	testing	are	the	most	important.	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 24	

The	common	types	of	tests	that	developers	can	write	for	applications	are:	
	
a) Unit	tests	

To	perform	the	execution	of	a	section	of	code	or	small	program	which	is	tested	in	isolation	from	the	
complete	software.	Tested	in	isolation	means	not	calling	the	implementation	of	code	not	under	test,	
e.g.,	database,	web	service	calls,	or	other	code	dependencies.	The	concept	of	isolation	is	why	mocking	
frameworks	are	commonly	used	for	unit	tests.	Developers	would	write	these	during	the	development	
of	a	feature.	

b) Integration	tests	
To	 perform	 the	 combined	 execution	 sections	 of	 code.	 In	 these	 types	 of	 tests,	 you	 would	 hit	 the	
database,	make	web	service	 calls,	or	 call	other	 code	dependencies.	Developers	would	write	 these	
during	the	development	of	a	feature.	

c) Regression	tests	
To	perform	 the	 repetition	 of	 previously	 executed	 test	 cases	 for	 the	 purpose	 of	 finding	 defects	 in	
software	that	previously	passed	the	same	set	of	tests.	Such	tests	would	commonly	be	used	before	
shipping	code	to	a	new	environment	or	as	part	of	a	build	process.	It’s	common	to	see	tools	such	as	
selenium	used	to	write	these	types	of	tests,	where	a	web	browser	would	be	launched	and	user	input	
automated.	Human	testers	can	also	perform	regression	tests	by	using	an	application	directly.	

d) Software	tests	
To	perform	the	execution	of	the	software	in	its	final	configuration,	including	integration	with	other	
software	and	systems.	It	tests	for	security,	performance,	resource	loss,	timing	problems,	and	other	
issues	that	can’t	be	tested	at	lower	levels	of	integration.	As	with	regression	testing,	automated	tools	
such	as	selenium	can	be	used	for	this	process	as	well	as	human	testers.	

6.3	Securing	build	environments	

Objectives	

a) To	protect	the	source	code	from	being	accessed	by	an	unrelated	person	with	the	project	during	the	
development	phase.		

b) To	ensure	the	integrity	of	the	source	code	developed.	

Implementation	guide	 	 		

6.3.1	Physically	securing	access	to	the	software’s	that	building	code.	

6.3.2	Using	access	control	lists	(ACLs)	
Access	control	lists	(ACLs)	that	prevent	access	to	unauthorized users.	 	

6.3.3	Using	the	version	control	software		
Version	control	software	to	assure	that	the	code	built	is	of	the	right	version.	 	

6.3.4	Build	automation	

Build	automation	is	the	process	of	scripting	or	automating	the	tasks	that	are	involved	in	the	build	process.	
It	takes	the	manual	activities	performed	by	the	build	team	members	daily	and	automates	them.	Some	of	
these	 build	 activities	 include	 compiling	 source	 code	 into	 machine	 code,	 packaging	 dependencies,	
deployment,	and	installation.	When	build	scripts	are	used	to	build	automation	processes,	it	is	important	
to	make	sure	that	security	controls	and	checks	are	not	circumvented,	when	using	these	build	scripts.		

6.3.5	Code	signing	routine		
Code	signing	is	to	ensure	the	integrity	of	the	source	code	being	developed.	 	

	

																		MyVAC-3-GUI-2-SSDLC-v1	

 25	

7			Phase	4:	Security	testing	

Objectives	

a) To	validate	and	verify	the	functionality	and	security	of	software	using	quality	assurance	testing	
b) To	ensure	the	code	developed	runs	as	intended	

There	are	two	(2)	types	of	security	tasks,	which	are	i)	attack	surface	validation,	ii)	test	data	management,	
to	accomplish	the	security	testing	phase.	The	details	will	be	provided	in	the	next	sub-section:	

7.1	Attack	surface	validation		

Objective	

To	verify	the	presence	and	effectiveness	of	the	security	controls	that	are	designed	and	implemented	in	
the	software.	

Implementation	guide	

7.1.1	Post-development	testing	

To	ensure	the	correctness	of	developed	software,	this	step	will	execute	code	analysis,	which	is	specifically	
on	dynamic	code	analysis,	is	the	inspection	of	the	code	when	it	is	being	executed	(run	as	a	program).				

7.1.2	Perform	security	testing	using	security	testing	methods	

Methods	or	approaches	used	to	accomplish	security	testing	are	as	below:	
	
a) White	box	testing	–	to	test	the	structure	of	software	which	performed	based	on	the	knowledge	of	

how	the	software	is	designed	and	implemented.	It	is	broadly	known	as	a	full	knowledge	assessment	
because	the	tester	has	complete	knowledge	of	the	software.	It	can	be	used	to	test	both	the	use	case	
(intended	behavior)	as	well	as	the	misuse	case	(unintended	behavior)	of	the	software	and	can	be	
conducted	 at	 any	 time	 post-development	 of	 code,	 although	 it	 is	 best	 advised	 to	 do	 so	 while	
conducting	unit	tests.		
Data/information	 flow,	 control	 flow,	 interfaces,	 trust	 boundaries	 (entry	 and	 exit	 points),	
configuration,	error	handling,	etc.	are	methodically	and	structurally	analyzed	for	security.	
	

b) Black	box	 testing	 –	 to	 test	 the	behavior	of	 software,	also	known	as	zero	knowledge	assessment,	
because	the	tester	has	very	limited	to	no	knowledge	of	the	internal	working	of	the	software	being	
tested.	Architectural	or	design	documents,	configuration	information	or	files,	use,	and	misuse	cases	
or	the	source	code	of	the	software	is	not	available	to	or	known	by	the	testing	team.	
Black	box	testing	is	performed	using	different	tools.	The	common	methodologies	by	which	black	box	
testing	is	accomplished	with	tools	are	fuzzing,	scanning,	and	penetration	testing.	
	

c) Cryptographic	 validation	 testing	 –	 to	 ensure	 the	 applications	 that	 employ	 cryptographic	
mechanisms	are	using	solid	cryptographic	algorithms	and	best	practices	for	key	management.		Some	
of	 these	requirements	are	available	 from	Federal	 Information	Processing	Standards	(FIPS)	140-2	
Special	Publications	and	MySEAL	(National	Trusted	Cryptographic	Algorithm	List)	website	 for	all	
standard	algorithms	such	as	AES,	RSA,	DSA,	etc.	whenever	applicable.	

7.1.3	Perform	software	security	testing	for	quality	assurance

To	apply	with	different	types	of	tests	and	how	they	can	be	performed	to	attest	to	the	security	of	code	that	
is	developed	in	the	development	phase	of	the	SSDLC.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 26	

For	software	revisions,	regression	testing	should	be	conducted,	and	for	all	versions,	new	or	revisions,	the	
following	 security	 tests	 should	 be	 performed,	 if	 applicable,	 to	 validate	 the	 strength	 of	 the	 security	
controls.	 Using	 a	 categorized	 list	 of	 threats	 as	 a	 template	 of	 security	 testing	 is	 effective	 in	 ensuring	
comprehensive	coverage	of	 the	varied	 threats	 to	software.	 Ideally,	 the	same	 threat	 list	 that	was	used	
when	threat	modeling	the	software	will	be	the	threats	list	that	is	used	for	conducting	security	tests	as	
well.	This	way,	security	testing	can	be	used	to	validate	the	threat	model.		

The	security	tests	are	as	follows:	
a) Testing	for	input	validation	
b) Testing	for	injection	flaws	controls		
c) Testing	for	scripting	attacks	controls	 	
d) Testing	for	non-repudiation	controls		
e) Testing	for	spoofing	controls		
f) Testing	for	error	and exception	handling	controls	(failure	testing)		
g) Testing	for	privileges	escalations	controls	 	
h) Anti-reversing	protection	testing	 	
i) Stress	testing	

7.2	Test	data	management	

Objective	

To	identify	input	test	data	and	data	that	is	expected	to	be	output	after	normal	operations	of	the	
software.	

Implementation	guide	

7.2.1	Identify	output	test	data	to	confirm	software	requirements	

To	identifying	expected	output	test	data	helps	to	confirm	if	the	software	is	meeting	the	requirements.	The	
quality	of	test	data	is	directly	related	to	the	quality	of	the	test	itself,	and	so	test	data	needs	to	be	managed.	
Production	data	should	never	be	imported	into	and	processed	in	test	environments.	It	is	advisable	to	use	
dummy	data	by	creating	it	from	scratch	in	the	test	or	simulated	environment.		

7.2.2	Apply	testing	with	synthetic	transactions		

To	 perform	 transactions	 that	 serve	 no	 business	 value	 that	 is	 related	 to	 the	 dummy	 data.	 Synthetic	
transactions	can	be	passive	or	active.	Passive	synthetic	transactions	are	not	stored	(or	maintained)	and	
do	not	have	 any	 residual	 impact	 on	 the	 software	 itself.	However,	 if	 the	query	 for	 finding	orders	of	 a	
‘dummy’	customer	is	processed	and	stored	within	the	software	application,	it	would	constitute	an	active	
synthetic	transaction.	The	usage	of	active	synthetic	transactions	requires	one	to	give	attention	to	setting	
up	the	data	and	environment	in	such	a	manner	that	it	does	not	impact	the	production	environment.		

7.2.3	Test	data	management	solutions		

It	can	aid	in	the	creation	of	referentially	whole	data	subsets	of	production	data.	To	reduce	some	of	the	
concerns	that	come	with	the	creation	of	quality	test	data	and	its	management	in	test	environments.	These	
solutions	automatically	discover	data	relationships	by	analyzing	and	capturing	table	attributes.	Ensure	
that	the	extraction	rules	consider	the	storage	space	that	is	available	in	the	test	environment,	so	that	the	
extraction	process	does	not	end	up	extracting	a	large	subset	of	data	that	cannot	be	imported	into	the	test	
environment,	due	to	size	limitations.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 27	

7.2.4	Defect	reporting	and	tracking	 	

To	 report	on	defects/flaws	and	 then	 track	 the	coding	bugs,	design	 flaws,	behavioral	 anomalies	 (logic	
flaws),	errors,	faults,	and	vulnerabilities	of	the	software.	Reporting	defects	should	be	comprehensive	and	
detailed	 enough	 to	 provide	 the	 software	 development	 teams	 the	 information	 that	 is	 necessary	 to	
determine	the	root	cause	of	the	issue	so	that	they	can	address	it.		

	

8			Phase	5:	Security	deployment	

Objectives	

a) To	ensure	completion	of	operation	plan	and	application	documentation	
b) To	ensure	management	approval	and	risk	acceptance	for	deployment	
c) To	ensure	the	application	is	meets	its	functionality	and	secured	
d) To	ensure	a	secured	environment	and	configuration	for	deployment	

There	are	four	(4)	types	of	security	tasks,	which	are	i)	software	acceptance	considerations;	ii)	verification	
and	validation	(V&V);	iii)	certification	and	accreditation	(C&A);	iv)	installation;	to	accomplish	the	security	
deployment	phase.	The	details	will	be	provided	in	the	next	sub-section:	

8.1	Software	acceptance	considerations	

Objectives	

a) To	ensure	application	documentation	and	operation	plan	is	ready.	
b) To	obtain	approval	and	risk	acceptance.	

Implementation	guide	

8.1.1	Completion	criteria	

To	validate	 and	 verified	 all	 functional	 and	 security	 requirements	 completed	 as	 expected.	 Completion	
criteria	for	functionality	and	software	security	with	explicit	milestones	should	be	defined	well	in	advance.	
Some	examples	of	security-related	milestones	include,	but	are	not	limited	to,	the	following:		

a) generation	of	the	security	requirements	besides	functional	requirements	in	the	requirement	phase;	
b) completion	of	the	threat	model	during	the	design	phase;	 	
c) review	and	sign-off	on	the	security	architecture	at	the	end	of	the	design	phase;	 	
d) review	of	code	for	security	vulnerabilities	after	the	development	phases;	 	
e) completion	of	security	testing	at	the	end	of	the	application	testing	phase;	and	 	
f) completion	of	documentation	before	the	deployment	phase	commences.	 	

8.1.2	Change	management		

To	 ensure	 the	 process	 in	 place	 to	 handle	 change	 requests.	 Change	 management	 is	 a	 subset	 of	
configuration	 management.	 Changes	 to	 the	 computing	 environment	 and	 redesign	 of	 the	 security	
architecture	can	potentially	 introduce	new	security	vulnerabilities,	 thereby	 increasing	risk.	Necessary	
support	queues	and	processes	for	the	software	that	is	to	be	deployed/released	should	be	established.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 28	

8.1.3	Approval	to	deploy	or	release	 	

To	ensure	all	the	required	authorities	signed	off.	Without	approvals,	no	change	should	be	allowed	to	the	
production	computing	environment.	Before	any	new	installation	of	software,	risk	analysis	needs	to	be	
conducted,	and	the	residual	risk	determined.	The	results	of	the	risk	analysis,	along	with	the	steps	taken	
to	address	it	(mitigate	or	accept)	should	be	communicated	to	the	business	owner.	The	authorizing	official	
should	 be	 informed	 of	 the	 residual	 risk.	 The	 approval	 or	 rejection	 to	 deploy/release	 should	 include	
recommendations	and	support	from	the	security	team.	Ultimately	it	is	the	authorizing	official	(AO)	who	
is	responsible	for	change	approvals.	 	

8.1.4	Risk	acceptance	and	exception	policy	 

To	ensure	the	residual	risk	acceptable	and/or	tracked	as	an	exception	if	it	is	not	within	the	threshold.	The	
risk	that	remains	after	the	implementation	of	security	controls	(residual	risk)	needs	to	be	determined	
first.	The	best	option	to	address	total	risk	is	to	mitigate	it	so	that	the	residual	risk	falls	below	the	business	
defined	 threshold,	 in	 which	 case	 the	 residual	 risk	 can	 be	 accepted.	 Risk	 should	 be	 accepted	 by	 the	
business	owner	and	not	by	officials	in	the	IT	department.	 	

8.1.5	Documentation	of	software		

To	ensure	all	necessary	documentation	are	in	place.	Documenting	what	the	software	is	supposed	to	do,	
how	it	is	architected,	how	it	is	to	be	installed,	what	configuration	settings	need	to	be	preset,	how	to	use	
it,	and	administer	it	is	extremely	important	for	effective,	secure,	and	continued	use	of	the	software.	Some	
of	 the	primary	objectives	 for	documentation	 are	 to	make	 the	 software	deployment	process	 easy	 and	
repeatable	and	to	ensure	that	operations	are	not	disrupted,	and	the	impact	upon	changes	to	the	software	
is	understood.		

8.2	Verification	and	validation	(V&V)	

Objective	

To	ensure	application	functionality	and	secured	for	the	production	environment.	

Implementation	guide	

8.2.1	Reviews	

To	conduct	a	review	at	the	end	of	each	phase	for	ensuring	that	the	software	performs	as	expected	and	
meets	business	specifications.	This	can	be	done	informally	or	formally.	

8.2.2	Testing	

To	 demonstrate	 that	 the	 software	 truly	 meets	 the	 requirements	 and	 determine	 any	 variances	 or	
deviations	from	what	is	expected	using	the	actual	results	from	the	test.	The	different	kinds	of	tests	that	
are	conducted	as	part	of	V&V	are:		

a) Error	detection	tests	–	unit	and	component	level	testing.	Errors	may	be	flaws	(design	issues)	or	bugs	
(code	issues).		

b) Acceptance	tests	–	used	to	demonstrate	if	the	software	is	ready	for	its	intended	use	or	not.	Software	
that	 is	 deemed	 ready	 should	 not	 only	 be	 validated	 for	 all	 functional	 requirements	 but	 also	 be	
validated	to	ensure	that	meets	assurance	(security)	requirements.	 	

c) Independent	(Third	Party)	tests	–	testing	of	software	functionality	and	assurance	is	the	process	in	
which	the	software	is	reviewed,	verified,	and	validated	by	someone	other	than	the	developer	of	the	
software.	This	is	commonly	also	referred	to	as	Independent	Verification	&	Validation.		 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 29	

8.3	Certification	and	accreditation	(C&A)	

Objectives	

a) To	obtain	technical	verification	of	application	functionality.		
b) To	obtain	overall	acceptance	for	deployment	into	the	production	environment.	

Implementation	guide	

8.3.1	Obtain	certification		

To	achieve	the	certification	for	the	technical	verification	of	the	software	functional	and	assurance	levels.	
Security	certification	considers	the	software	in	the	operational	environment.		

At	the	minimum,	it	will	include	assurance	evaluation	of	the	following:		
	
a) User	rights,	privileges,	and	profile	management	 	
b) The	sensitivity	of	data	and	application	and	appropriate	controls	 	
c) Configurations	of	software,	facility,	and	locations	 	
d) Interconnectivity	and	dependencies,	and		
e) Operational	security	mode	

Organizations	can	obtain	Common	Criteria	 certification	 for	 ICT	products	 through	Malaysian	Common	
Criteria	Evaluation	and	Certification	 (MyCC)	Scheme	and	also	Malaysia	Trustmark	 certification	 for	 e-
business	in	the	private	sector,	which	are	provided	by	the	CyberSecurity	Malaysia	(CSM).	

8.3.2	Obtain	accreditation	 	

To	 achieve	 the	 accreditation	 of	 management’s	 formal	 acceptance,	 need	 verification	 from	
participant/target	users	regarding	the	software	after	an	understanding	of	the	risks	to	that	software	rating	
in	 the	 computing	 environment.	 It	 is	 the	 management’s	 official	 decision	 to	 operate	 software	 in	 the	
operational	 security	 mode	 for	 a	 stated	 period	 and	 is	 the	 formal	 acceptance	 of	 the	 identified	 risk	
associated	with	operating	the	software.	 	

8.4	Installation	

Objective	

To	securing	application	production	environment	and	configuration	

Implementation	guide	

8.4.1	Hardening		

To	 lock	 down	 the	 software	 to	 the	most	 restrictive	 level	 so	 that	 it	 is	 secure.	 This	minimum	 (or	most	
restrictive)	 security	 levels	 are	 usually	 published	 as	 a	 baseline	 that	 all	 software	 in	 the	 computing	
environment	should	comply	with.	This	baseline	is	commonly	referred	to	as	a	minimum	baseline	created	
based	on	the	usage	of	the	operating	system.		

It	 is	 important	to	harden	the	host	operating	system	by	using	baseline,	updates,	and	patches.	 It	 is	also	
critically	important	to	harden	the	applications	and	software	that	run	on	top	of	these	operating	systems.	
Hardening	of	software	involves	setting	the	necessary	and	correct	configuration	settings	and	architecting	
the	software	to	be	secure	by	default.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 30	

8.4.2	Environment	configuration		

To	ensure	that	the	needed	parameters	required	for	the	software	to	run	are	appropriately	configured	by	
using	pre-installation	checklists.	However,	since	it	is	not	always	possible	to	statically	identify	dynamic	
issues,	 checklists	 provide	no	 guarantee	 that	 the	 software	will	 function	without	 violating	 the	 security	
principles	with	which	it	was	designed	and	built.		

Therefore,	 it	 is	crucial	 to	ensure	 that	 the	development	and	test	environment	match	 the	configuration	
makeup	 of	 the	 production	 environment	 and	 simulation	 testing	 identically	 emulates	 the	 settings	
(including	 the	 restrictive	 settings)	 of	 the	 environment	 in	 which	 the	 software	 will	 be	 deployed	 post	
acceptance.	

8.4.3	Release	management	 	

To	ensure	the	properly	released	of	software	into	the	operating	computing	environment	once	hardware	
and	software	resources	are	hardened	and	the	environment	configured	for	secure	operations.	

Release	 management	 is	 the	 process	 of	 ensuring	 that	 all	 changes	 that	 are	 made	 to	 the	 computing	
environment	are	planned,	documented,	thoroughly	tested,	and	deployed	with	the	least	privilege	without	
negatively	impacting	any	existing	business	operations,	customers,	end-users,	or	user	support	teams.	

8.4.4	Bootstrapping	and	secure	startup	 	

To	determine	that	the	software	startup	processes	do	not	in	any	way	adversely	impact	the	confidentiality,	
integrity	or	availability	of	the	software	upon	the	installation	of	software.	The	Power-on	self-test	(POST)	
is	the	first	step	in	an	Initial	Program	Load	(IPL)	and	is	an	event	that	needs	to	be	protected	from	being	
tampered	so	that	the	Trusted	Computing	Base	(TCB)	is	maintained.	

	

9			Phase	6:	Security	maintenance	

Objectives	

a) To	monitor	and	guarantee	 that	 the	 software	will	 continue	 to	 function	 in	a	 reliable,	 resilient,	 and	
recoverable	manner.	

b) To	identify	the	software	and	conditions	under	which	software	needs	to	be	disposed	or	replaced.	

There	are	five	(5)	types	of	security	tasks,	which	are	i)	operations,	monitor	and	maintenance;	ii)	incident	
management;	iii)	problem	management;	iv)	change	management;	v)	disposal;	to	accomplish	the	security	
maintenance	phase.	The	details	will	be	provided	in	the	next	sub-section:	

9.1	Operations,	monitor	and	maintenance	

Objectives	

a) To	 provide	 services	 to	 the	 business	 or	 end-users	 for	 the	 needs	 of	 software	 operations	 and	
maintenance.		

b) To	ensure	assurance	aspects	of	reliable,	resilient,	and	recoverable	processing	of	the	software.	

Implementation	guide	

																		MyVAC-3-GUI-2-SSDLC-v1	

 31	

9.1.1	Carry	out	the	operations	security

To	ensure	the	operations	security	is	about	staying	secure	or	keeping	the	resiliency	levels	of	the	software	
above	 the	 acceptable	 risk	 levels.	 It	 is	 the	 assurance	 that	 the	 software	will	 continue	 to	 function	 as	 is	
expected	 to	 in	 a	 reliable	 fashion	 for	 the	 business	 without	 compromising	 its	 state	 of	 security	 by	
monitoring,	managing,	and	applying	the	needed	controls	to	protect	resources	(assets).	

Different	types	of	operations	security	controls	are	as	follows:	
a) Detective	 Controls	 are	 those	 that	 can	 be	 used	 to	 build	 historical	 evidence	 of	 user	 and	

software/process	actions.	
b) Preventive	Controls	are	those	who	make	the	success	of	the	attacker	difficult	as	its	goal	is	to	prevent	

the	attack	actively	or	proactively.	
c) Deterrent	Controls	are	those,	which	don’t	necessarily	prevent	an	attack,	nor	are	they	merely	passive	

in	nature.	
d) Corrective	Controls	are	those	who	aim	to	provide	the	recoverability	of	software	assurance.	
e) Compensating	 Controls	 are	 those	 controls	 that	 should	 be	 implemented	 when	 the	 prescribed	

software	controls	as	mandated	by	a	security	policy	or	requirement	cannot	be	met	due	to	legitimate	
technical	or	documented	business	constraints.	

9.1.2	Continuous	monitoring	

To	 perform	monitoring	 to	 any	 system,	 software,	 or	 processes.	 It	 is	 important	 to	 first	 determine	 the	
monitoring	requirements	before	implementing	a	monitoring	solution.	Monitoring	requirements	need	to	
be	solicited	from	the	business	early	in	the	software	development	life	cycle.	

Along	with	the	requirements,	associated	metrics	that	measure	actual	performance	and	operations	should	
be	identified	and	documented.	Continuous	security	tests	should	be	conducted	at	a	planned	interval	or	
according	to	changes	based	on	needs	or	requirements.		

9.1.3	Audit	for	monitoring	

To	 provide	 an	 independent	 review	 and	 examination	 of	 software	 records	 and	 activities.	 An	 audit	 is	
conducted	 by	 an	 auditor	whose	 responsibilities	 include	 the	 selection	 of	 events	 to	 be	 audited	 on	 the	
software,	setting	up	of	the	audit	flags	which	enable	the	recording	of	those	events	and	analyzing	the	trail	
of	 audit	 events.	 Audits	 should	 be	 conducted	 periodically	 and	 can	 give	 insight	 into	 the	 presence	 and	
effectiveness	of	security	and	privacy	controls.	

9.2	Incident	management	

Objective	

To	detect	and	monitor	the	incidence	of	a	security	breach. 	

Implementation	guide	

9.2.1	Determine	events,	alerts,	and	incidents	

To	determine	if	a	security	incident	has	truly	occurred	or	not,	firstly,	to	define	what	constitutes	an	incident.	
Failure	to	do	so	can	lead	to	potential	misclassification	of	events	and	alerts	as	incidents,	and	this	could	be	
costly.	 	

a) Event	is	any	action	that	is	directed	at	an	object	which	attempts	to	change	the	state	of	the	object	
b) Alerts	are	flagged	events	that	need	to	be	scrutinized	further	to	determine	if	the	event	occurrence	is	

an	incident.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 32	

c) Alerts	 can	 be	 categorized	 into	 incidents,	 and	 adverse	 events	 can	 be	 categorized	 into	 security	
incidents	if	they	violate	or	threaten	to	violate	the	security	policy	of	the	network,	system,	or	software	
applications.	

9.2.2	Identify	types	of	incidents	

To	identify	several	types	of	incidents	and	the	main	security	incidents,	there	are	include	the	following:	
a) Denial	of	Service	(DoS)	–	is	an	attack	that	prevents	or	impairs	an	authorized	user	from	using	the	

network,	systems,	or	software	applications	by	exhausting	resources.	
b) Malicious	Code	–	has	to	do	with	code-based	malicious	entities	such	as	viruses,	worms,	and	Trojan	

horses	that	can	successfully	infect	a	host.	
c) Unauthorized	Access	–	access	control	related	incidents	refer	to	those	wherein	a	person	gains	logical	

or	physical	access	to	the	network,	system	or	software	applications,	data,	or	any	other	IT	resource,	
without	being	granted	the	explicit	rights	to	do	so.	

d) Inappropriate	Usage	–	comprise	of	those	in	which	a	person	violates	the	acceptable	use	of	software	
resources	or	company	policies.		

e) Multiple	Component	–	are	those	which	encompass	two	or	more	incidents.		

9.2.3	Incident	response	process	

To	enables	and	assure	operations	security	of	the	organization	and	remain	in	business.	The	major	phases	
of	 the	 incident	 response	 process	 involve	 are	 preparation,	 detection	 and	 analysis,	 containment,	
eradication	and	recovery,	and	post-incident	analysis.		

Brief	explanations	are	as	follows:	
	
a) Preparation	–	the	organization	aims	to	limit	the	number	of	incidents	by	implementing	controls	that	

were	deemed	necessary	from	the	initial	risk	assessments.	
b) Detection	and	analysis	–	the	organization	able	to	detect	security	breaches	will	be	aware	of	incidents	

before,	or	when	they	occur,	and	if	the	incident	is	disruptive	and	unknown,	appropriate	actions	should	
be	taken.	

c) Containment,	eradication,	and	recovery	–	upon	the	detection	and	validation	of	a	security	incident,	
the	first	course	of	action	that	needs	to	be	taken	is	that	the	incident	is	contained	to	limit	any	further	
damage	or	additional	risks.	Containment	is	the	steps	necessary	to	remove	and	eliminate	components	
of	 the	 incident	 should	 be	 undertaken.	 Eradication	 steps	 may	 be	 performed	 during	 recovery	 to	
enforce	that	any	fixes	or	steps	to	eradicate	the	incident	are	steps	only	after	appropriate	authorization	
is	 granted.	 Recovery	 mechanisms	 aim	 to	 restore	 the	 resource	 (network,	 system	 or	 software	
application)	back	to	its	normal	working	state.	

d) Post-incident	 analysis	 –	 This	 is	 a	 lesson	 learned	 activities	 that	 produce	 a	 set	 of	 objective	 and	
subjective	data	regarding	each	incident.	

9.3	Problem	management	

Objective	

To	determine	and	eliminate	the	root	cause	of	the	problem	(unknown	incident)	and	to	improves	the	
service	that	the	software	provides	to	the	business	so	that	it	will	not	be	repeated.		

Implementation	guide	

9.3.1	Incident	notification	
To	identify	and	notify	the	unknown	incident,	a	problem	happened	to	the	software.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 33	

9.3.2	Root	cause	analysis	

To	determine	the	reason	for	the	problem	by	implementing	the	root	causes	analysis	(RCA)	steps.	RCA	is	
performed	to	determine	‘Why’	the	problem	occurred,	repeatedly	and	systematically,	until	there	are	no	
more	reasons	(or	causes)	that	can	be	answered.		

9.3.3	Solution	determination	
To	determine	the	solution,	which	is	temporary	workarounds	or	permanent	fixes	to	be	implemented.	

9.3.4	Request	for	change	

To	 include	 workarounds	 (to	 support	 existing	 users),	 known	 errors,	 update	 problem	 information,	
management	information,	and	request	for	changes.	

9.3.5	Implement	solution	
To	implement	the	identified	solution	after	initiating	a	request	for	change.	

9.3.5	Monitor	and	report	
To	monitor	the	solution	to	the	problem	by	preparing	the	report.	

9.4	Change	management	

Objectives	

a) To	determine	the	recovery	and	resolution	of	the	problem	after	the	root	cause	is	identified.		
b) To	track	the	vulnerability	and	monitor	the	problem	resolution	to	ensure	that	it	was	effective	and	that	

the	problem	does	not	happen	again.	

Implementation	guide	

9.4.1	Patch	and	vulnerability	management		

To	update	or	fix	existing	software	with	patches,	which	is	a	piece	of	code	that	is	used	so	that	the	software	
is	not	susceptible	to	any	bugs.	Patching	is	the	process	of	applying	these	updates	or	fixes.	Patches	can	be	
used	to	address	security	problems	in	software	or	simply	provide	additional	functionality.	Patching	is	a	
subset	of	hardening.	

Some	of	the	necessary	steps	that	need	to	be	taken	as	part	of	the	patching	process	include:	
	
a) Notifying	the	users	of	the	software	or	systems	about	the	patch	
b) Testing	 the	 patch	 in	 a	 simulated	 environment	 so	 that	 there	 is	 no	 backward	 compatibility	 or	

dependencies	(upstream	or	downstream)	issues.		
c) Documenting	 the	 change	 along	 with	 the	 rollback	 plan.	 The	 estimated	 time	 to	 complete	 the	

installation	of	the	patch,	criteria	to	determine	the	success	of	the	patch,	and	the	rollback	plan	should	
be	included	as	part	of	the	documentation.	

d) Identifying	maintenance	windows	or	the	time	when	the	patch	is	to	be	installed	should	be	performed.	
The	best	time	to	install	the	patch	is	when	there	is	minimal	disruption	to	the	normal	operations	of	the	
business,	but	with	most	software	operating	in	a	global	economy	setting,	identifying	the	best	time	for	
patch	application	is	a	challenge	today.	

e) Installing	the	patch	
f) Testing	the	patch	post-installation	 in	the	production	environment	 is	also	necessary.	Sometimes	a	

reboot	or	restart	of	the	software	where	the	patch	was	installed	is	necessary	to	read	or	load	newer	
configuration	 settings	 and	 fixes	 to	 be	 applied.	 Validation	 of	 backward	 compatibility	 and	
dependencies	also	needs	to	be	conducted.		

																		MyVAC-3-GUI-2-SSDLC-v1	

 34	

g) Validating	 that	 the	patch	did	not	 regress	 the	 state	of	 security	and	 that	 it	 leaves	 the	 systems	and	
software	in	compliance	with	the	minimum-security	baseline.		

h) Monitoring	the	patched	systems	so	that	there	are	no	unexpected	side	effects	upon	the	installation	of	
the	patch.		

i) Conducting	 post-mortem	 analysis	 in	 case	 the	 patch	 had	 to	 be	 rolled	 back	 and	 using	 the	 lessons	
learned	to	prevent	future	issues.	If	the	patch	was	successful,	the	minimum-security	baseline	needs	
to	be	updated	accordingly.	

j) Conducting	virtual	patching	to	cover	the	 legacy	system.	Virtual	patching	refers	to	establishing	an	
immediate	security	policy	enforcement	layer	that	prevents	the	exploitation	of	a	known	vulnerability,	
without	 modifying	 the	 application's	 source	 code,	 binary	 changes,	 or	 restarting	 the	 application.	
Virtual	patching	can	be	used	to	add	temporary	protection,	giving	the	development	teams	time	to	
deploy	physical	patches	according	to	their	own	update	schedules.	Virtual	patches	can	also	be	used	
permanently	for	legacy	systems	that	may	not	be	patchable.		

9.4.2	Backups,	recovery	and	archiving	

To	 assure	 uninterrupted	 business	 operations	 and	 continuity.	 The	 continuity	 of	 business	 without	
disruptions	is	an	important	factor	in	secure	software	operations.	Not	only	should	the	data	be	available	
but	also	the	system	itself.	

	
In	addition	to	regularly	scheduled	backups,	when	patches	and	software	updates	are	made,	it	is	advisable	
to	perform	a	full	backup	of	the	software	that	 is	being	changed.	 It	 is	also	crucial	 that	the	 integrity	and	
restorability	of	the	backup	(especially	if	it	is	data	backups)	are	verified.	

	
Additionally,	when	software	has	been	infected	by	malware	such	as	Trojan	horses	and	spyware,	the	only	
option	 left	 for	 assuring	 continued	 integrity	 may	 be	 to	 completely	 format	 and	 reinstall	 the	 software	
accompanied	by	restoring	the	data	from	a	secure,	trusted	and	verified	backup.	

	
Archives	can	come	in	handy	in	user	support,	especially	for	past	customers.	The	integrity	of	archives	can	
be	 accomplished	 using	 hashing,	 and	 proper	 key	 management	 needs	 to	 be	 in	 place	 to	 make	 the	
cryptographically	protected	data	in	archives	usable	upon	recovery.	

9.5	Disposal	

Objective	

To	identify	software	that	not	operational	to	be	disposed	to	reduce	the	residual	risk	

Implementation	guide	

9.5.1	End-of-Life	policies	

To	 perform	 risk	management	 activities	 for	 system	 components	 that	will	 be	 disposed	 or	 replaced	 to	
ensure	that	the	hardware	and	software	are	properly	disposed.	

In	order	to	manage	risk	during	the	disposal	phase,	it	is	essential	that	we	have	an	End-of-Life	(EOL)	policy	
to	be	developed	and	followed.	The	EOL	policy	is	the	first	requirement	in	the	secure	disposal	of	software	
and	its	related	data	and	documents.		

9.5.2	Sun-setting	criteria	

To	 dispose	 or	 replace	 a	 product	 such	 as	 software	 or	 the	 hardware	 on	 which	 the	 software	 runs	 by	
following	the	sun-setting	criteria	as	guidance.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 35	

9.5.3	Sun-setting	processes	

To	dispose	 the	 software	 related	 technologies	 that	 are	deemed	 insecure,	but	which	have	no	means	 to	
mitigate	the	risk	to	the	acceptable	levels	of	the	organization,	should	be	sun-set	as	soon	as	it	is	possible.	
In	compliance	with	the	organization’s	EOL	policy,	appropriate	EOL	processes	should	be	established.	EOL	
processes	are	the	series	of	technical	and	business	milestones	and	activities,	which,	when	complete,	make	
the	hardware	or	 software	obsolete	and	no	 longer	produced,	 sold,	 improved,	 repaired,	maintained,	or	
supported.		

9.5.4	Information	disposal	and	media	sanitization	

To	ensure	that	software	assurance	is	maintained	by	following	the	software	disposal	steps,	an	important	
part	 of	 that	 process	 is	 to	 also	 ensure	 that	 the	media	 that	 stored	 the	 information	 is	 also	 sanitized	 or	
destroyed	appropriately.	Sanitization	is	the	process	of	removing	information	from	media	such	that	data	
recovery	and	disclosure	 is	not	possible.	 It	also	 includes	 the	removal	of	classified	 labels,	marking,	and	
activity	logs	related	to	the	information.	

																		MyVAC-3-GUI-2-SSDLC-v1	

 36	

10			SSDLC	Checklist	
	
The	 provided	 guideline	 of	 Secure	 Software	 Development	 Life	 Cycle	 (SSDLC)	 has	 determined	 several	
security	tasks	that	involve	in	each	phase.	Subsequent	to	that,	checklists	are	used	as	a	quick	guide	for	the	
target	 audience.	These	 checklists	 assisted	 the	audience	 in	 tracking	and	monitoring	 the	 security	 tasks	
apply	to	the	development	of	secure	software	that	following	the	SSDLC	phases.	The	listed	checklists,	as	in	
the	following	sub-sections,	are	divided	according	to	the	phases	in	the	SSDLC.	

10.1	Phase	1:	Security	Requirements	(4)	
	
No.	 Security	Tasks	 Action	

(Done	þ	/	Not	ý)	
4.1	 Sources	for	security	requirement	

4.1.1	 Identify	core	security	requirements	 	
Confidential	requirements	 	
Integrity	requirements	 	
Availability	requirements	 	
Authentication	requirements	 	
Authorization	requirements	 	
Accountability	requirements	 	

4.1.2	 Identify	general	requirements	 	
Session	Management	requirements	 	
Errors	&	Exceptions	Management	requirements	 	
Configuration	Parameters	Management	requirements	 	

4.1.3	 Identify	operational	requirements	 	
Deployment	environment	requirements	 	
Archiving	requirements	 	
Anti-piracy	requirements	 	

4.1.4	 Identify	other	requirements	 	
Sequencing	and	timing	requirements	 	
International	requirements	 	
Procurement	requirements	 	

4.2	 Data	classification	
4.2.1	 Types	of	data	 	
4.2.2	 Labeling	the	data	 	
4.2.3	 Data	ownership	and	roles	 	
4.2.4	 Data	lifecycle	management	(DLM)	 	
4.2.5	 Privacy	requirements	 	

Data	anonymization	 	
Disposition	 	
Security	models	 	
Pseudonymization	 	

4.3	 Use	case	and	misuse	case	modeling	
4.3.1	 Analyze	the	use	case	scenarios	 	
4.3.2	 Analyze	the	misuse	case	scenarios		 	
4.3.3	 Creating	attack	model	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 37	

4.3.4	 Select	mitigation	control	 	
4.4	 Risk	management	

4.4.1	 Risk	assessment	 	
4.4.2	 Risk	mitigation	 	

Risk	mitigation	options	 	
Risk	mitigation	strategy	 	
Approach	for	control	implementation	 	
Control	categories	 	
Cost-benefit	analysis	 	
Residual	risk	 	

4.4.3	 Evaluation	and	assessment	 	
	
10.2	Phase	2:	Secure	Design	(5)	
	
No.	 Security	Tasks	 Action	

(Done	þ	/	Not	ý)	
5.1	 Core	Security	Design	Considerations	 	

5.1.1	 Confidentiality	design	 	
5.1.2	 Integrity	design	 	
5.1.3	 Availability	design	 	
5.1.4	 Authentication	design	 	
5.1.5	 Authorization	design	 	
5.1.6	 Accountability	design	 	

5.2	 Additional	Design	Considerations	
5.2.1	 Programming	languages	 	
5.2.2	 Data	type,	format,	range	and	length	 	
5.2.3	 Database	security	 	
5.2.4	 Interface	design	 	
5.2.5	 Interconnectivity	 	

5.3	 Threat	modeling	
5.3.1	 Step	1:	Decompose	the	software		 	
5.3.2	 Step	2:	Determine	and	rank	threats	 	
5.3.3	 Step	3:	Determine	countermeasures	and	mitigation.	 	

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 38	

	10.3	Phase	3:	Security	Development	(6)	
	
No.	 Security	Tasks	 Action	

(Done	þ	/	Not	ý)	
6.1	 Common	software	vulnerabilities	and	controls	

6.1.1	 Vulnerability	databases	 	

The	most	common	software	security	vulnerabilities	and	risks	are:	 	
buffer	overflow	 	

stack	overflow	 	
heap	overflow	 	
injection	flaws	 	

broken	authentication	and	session	management	 	
cross-site	scripting	(XSS)	 	
insecure	direct	object	references	 	

security	misconfiguration	 	
sensitive	data	exposure	 	

missing	function	level	checks	 	
Cross-Site	Request	Forgery	(CSRF)	 	
using	known	vulnerable	components	 	

invalidated	redirects	and	forwards	 	
file	attacks	 	

race	condition	 	
side	channel	attacks	 	

6.1.2	 Defensive	Coding	Practices	 	

The	most	common	defensive	coding	practices	and	techniques	are:	 	
input	validation		 	
canonicalization		 	

sanitization		 	
error	handling	 	

safe	application	programming	interfaces	(API)	 	
memory	management	 	
exception	management	 	

session	management	 	
configuration	parameters	management	 	
secure	startup	 	

cryptography	 	
concurrency	 	

tokenization	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 39	

sandboxing	 	
anti-tampering	 	

6.2	 Secure	software	processes	
6.2.1	 Source	code	versioning	 	

6.2.2	 Code	analysis	 	
6.2.3	 Code	review	 	
6.2.4	 Developer	testing	 	

Unit	tests	 	
Integration	tests	 	
Regression	tests	 	

Software	tests	 	
6.3	 Securing	build	environments	

6.3.1	 Physically	securing	access	to	the	systems	that	build	code.	 	
6.3.2	 Using	 access	 control	 lists	 (ACLs)	 that	 prevent	 access	 to	

unauthorized users.	
	

6.3.3	 Using	version	control	software	to	assure	that	the	code	built	is	of	
the	right	version.	

	

6.3.4	 Build	 automation	 is	 the	 process	 of	 scripting	 or	 automating	 the	
tasks	that	are	involved	in	the	build	process.	

	

6.3.5	 Code	signing	routine	 	
	
10.4	Phase	4:	Security	Testing	(7)	
	
No.	 Security	Activities	 Action	

(Done	þ	/	Not	ý)	
7.1	 Attack	surface	validation	

7.1.1	 Post-development	testing	 	
7.1.2	 Perform	security	testing	using	security	testing	methods	 	

White	box	testing	 	

Black	box	testing	 	
Cryptographic	validation	testing	 	

7.1.3	 Perform	software	security	testing	for	quality	assurance	 	
7.2	 Test	data	management	

7.2.1	 Identify	output	test	data	to	confirm	software	requirements	 	

7.2.2	 Apply	testing	with	synthetic	transactions	 	
7.2.3	 Test	 data	 management	 solutions	 can	 aid	 in	 the	 creation	 of	

referentially	whole	data	subsets	of	production	data.	
	

7.2.4	 Defect	reporting	and	tracking	 	
	

																		MyVAC-3-GUI-2-SSDLC-v1	

 40	

10.5	Phase	5:	Security	Deployment	(8)	
	
No.	 Security	Tasks	 Action	

(Done	þ	/	Not	ý)	
8.1	 Software	acceptance	considerations	

8.1.1	 Completion	criteria	 	

8.1.2	 Change	management		 	
8.1.3	 Approval	to	deploy	or	release	 	

8.1.4	 Risk	acceptance	and	exception	policy	 	 	

8.1.5	 Documentation	of	software		 	
8.2	 Verification	and	validation	(V&V)	

8.2.1	 Reviews	 	

8.2.2	 Testing	 	
8.3	 Certification	and	accreditation	(C&A)	

8.3.1	 Obtain	certification.	 	

8.3.2	 Obtain	accreditation.	 	
8.4	 Installation	

8.4.1	 Hardening	 	
8.4.2	 Environment	configuration	 	
8.4.3	 Release	management	 	

8.4.4	 Bootstrapping	and	secure	startup	 	
	
10.6	Phase	6:	Security	Maintenance	(9)	
	
No.	 Security	Tasks	 Action	

(Done	þ	/	Not	ý)	
9.1	 Operations,	monitor	and	maintenance	

9.1.1	 Carry	out	the	operations	security.	 	

9.1.2	 Continuous	monitoring	 	
9.1.3	 Audit	for	monitoring	 	

9.2	 Incident	management		

9.2.1	 Determine	events,	alerts,	and	incidents	 	
9.2.2	 Identify	types	of	incidents	 	

9.2.3	 Incident	response	process	 	
9.2.4	 Problem	management	 	

9.3	 Problem	management	

9.3.1	 Incident	notification	 	
9.3.2	 Root	cause	analysis	 	
9.3.3	 Solution	determination	 	

9.3.4	 Request	for	change	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 41	

9.3.5	 Implement	solution	 	
9.3.6	 Monitor	and	report	 	

9.4	 Change	management	
9.4.1	 Patch	and	vulnerability	management		 	

9.4.2	 Backups,	recovery	and	archiving	 	
9.5	 Disposal	

9.5.1	 End-of-Life	policies	 	

9.5.2	 Sun-setting	criteria	 	
9.5.3	 Sun-setting	processes	 	
9.5.4	 Information	disposal	and	media	sanitization	 	

	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 42	

Annex	A	

Reference	on	Examples	for	Secure	Software	Architectures	

1. Figure	A-1	below	shows	the	example	of	secure	software	architecture.	
	

	
Figure	A-1:	Example	of	Secure	Software	Architecture	

	

The	 example	 given	 in	 Figure	 A-1	 is	 a	 sample	 of	 suggestions	 for	 secure	 software	 architecture,	which	
basically	applied	to	a	secure	software	system.	However,	organizations	can	make	their	choice	and	decision	
on	applying	as	many	as	possible	controls	according	to	the	estimation	cost	of	the	development	project.		

Referring	to	Figure	A-1,	the	requirements	of	controls	are	needed	to	assure	the	security	of	the	proposed	
secure	software	by	providing	three	(3)	main	segmentations,	which	are	public,	demilitarized	zone	(DMZ),	
and	secure	local	area	network	(LAN).	The	DMZ	segmentation	is	for	the	purpose	of	controls,	filtering	or	
monitoring	conducted	by	the	firewall,	intrusion	detection	system	(IDS)	or	intrusion	prevention	system	
(IPS).	The	management	LAN	is	intended	for	staff	and	developers	who	are	authorized	to	access	the	devices	
or	applications.	Furthermore,	for	secure	LAN	segmentation	and	accessing	the	databases	are	controlled,	
filtered,	or	monitored	by	the	firewall,	IDS	or	IPS.		 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 43	

2. Figure	A-2	below	shows	the	example	of	secure	software	architecture	with	protection	controls.	

	

	

	

Figure	A-2:	Example	of	Secure	Software	Architecture	with	Protection	Controls	

As	refer	to	Figure	A-2,	the	protection	controls	involve	are	started	from	the	end-user	site,	which	is	the	
authentication	that	has	been	provided	in	order	to	access	the	secure	software.	An	authorized	end-user	will	
be	in	a	secure	communication	and	with	the	authorization	can	pass	through	the	firewall.		

There	are	more	protection	controls	can	be	provided.	The	possible	controls	can	be	provided	specifically	
in	web	server	are	input	and	data	validation,	user	authorization,	secure	exception	management,	secure	
configuration,	or	more	others.	For	the	web	application	server,	protection	controls	that	can	be	provided	
are	authentication	and	authorization	 identities,	 secure	auditing	and	 logging,	 or	others.	 For	databases	
have	secure	database	configuration	or	others	as	the	protection	controls.	

The	example	given	in	Figure	A-2	is	a	sample	suggestion,	which	the	organizations	can	make	their	choice	
and	decision	on	applying	any	possible	controls	based	on	the	estimation	cost	of	the	development	project.		

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 44	

Annex	B	

Example	of	Security	Requirements	

An	application	can	be	described	using	different	tools,	such	as	informal	drawings,	pictures,	sketches	etc.	
In	developing	applications,	high-level	risk	tables	can	be	used	to	help	identifying	security	requirements.	
Table	B-1	gives	an	example	of	core	security	requirements	or	security	goals,	presenting	methods	that	can	
be	 used	 to	 achieve	 the	 protection	 or	mitigation	 and	 some	 tools	 that	may	 be	 used	 to	 help.	 Table	B-2	
provides	the	example	of	security	measures	and	the	associated	security	mechanism.	Table	B-3	presents	
an	example	of	a	security	requirement	table,	suggesting	the	priority	level.	The	content	should	be	reviewed	
during	the	initial	analysis	and/or	always	when	some	modification	is	necessary	into	the	software.	

Table	B-1	Core	Security	Requirements	(Security	Goals)	and	Associated	Security	Measures	

Core	security	requirements	 Associated	security	measures	
Confidentiality	 Access	control;	Physical	protection;	Security	policy	
Integrity	 Access	 control;	 Non-repudiation;	 Physical	 protection;	 Attack	

detection	
Availability	 System	recovery;	Physical	protection;	Attack	detection	
Accountability	 Non-repudiation;	Attack	detection	
	

Table	B-2	Security	Measures	and	Associated	Security	Mechanisms	

Security	measures	 Associated	security	mechanisms	
Access	control	 Biometrics;	 Certificates;	Multilevel	 security;	 Passwords	 and	 keys;	 Reference	

monitor;	Registration;	Time	limits;	User	permissions;	VPN	
Security	policy	 Administrative	privileges;	Malware	detection;	Multilevel	 security;	Reference	

monitor;	Secure	channels;	Security	session;	Single	access	point;	Time	 limits;	
User	permissions;	VPN	

Non-repudiation	 Administrative	privileges;	Logging	and	auditing;	Reference	monitor		
Physical	protection	 Access	 cards;	 Alarms;	 Equipment	 tagging;	 Locks;	 Off-site	 storage;	 Secured	

rooms;	Security	personnel	
System	recovery	 Backup	 and	 restoration;	 Configuration	 management;	 Connection	 service	

agreement;	Disaster	recovery;	Off-site	storage;	Redundancy	
Attack	detection	 Administrative	 privileges;	 Alarms;	 Incident	 response;	 Intrusion	 detection	

systems;	Logging	and	auditing;	Malware	detection;	Reference	monitor	
Boundary	protection	 DMZ	(Demilitarized	Zone);	Firewalls;	Proxies;	Single	access	point;	VPN	
	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 45	

Table	B-3	Security	Requirements	with	Priority	Level	

Security	type		 Requirement	description	 Comments	 Priority	
Authentication	 The	system	should	have	authentication	

measures	at	all	the	entry	points,	front	
panel,	or	inbound	network	connection.	

To	avoid	unauthorized	access	 1	

The	system	should	support	Windows	
domain	authentication,	and	when	
authenticate	to	AD	(Active	Directory),	
should	support	NTLMv2,	as	well	as	
Kerberos	protocol,	and	should	avoid	
transmitting	username/password	on	the	
wire	when	authentication	to	the	AD.	

Currently	many	systems	use	
Single	Sign-On	(SSO)	using	
Kerberos	and	Windows	
domain.	

2	

The	system	should	support	Smartcard,	
USB	token	(two	factors)	authentication.	

Improving	the	security	using	
smartcard	technologies	and	
facilitating	the	physical	access	
in	case	of	using	SSO	

1	

The	system	should	support	Proximity	
card,	magnetic	card	authentication.	

To	adequate	some	
technologies	as	NFC	(Near	
Field	Communication),	for	
example.	

3	

The	system	should	support	
authentication	based	on	device	local	
authority.	

In	case	of	physical	access.	 1	

The	system	should	support	
authentication	to	external	3rd	party	
authentication	server	and	protect	the	
user	credential	during	authenticating	to	
the	external	server.	

Security	network	aspects	
should	receive	special	
attention.	

1	

The	system	should	support	multiple	
authentication	approaches	at	the	same	
time.	

It	is	necessary	a	strong	
monitoring	and	auditing.	

1	

The	system	should	support	multiple	
login	sessions	concurrently,	and	sessions	
should	be	protected	in	relation	to	each	
other.	

To	avoid	session	hijacking.	 1	

The	system	should	support	the	outbound	
authentication	as	a	Single	Sign-On	(SSO)	
schema.	

Security	network	aspects	
should	receive	attention.	

1	

The	system	should	support	multi-level	
system	access.	

Security	issues	as	bypassing	
permissions	to	be	mitigated.	

1	

The	user	accounts	should	possess	
privileges	within	the	application	to	
perform	their	signing	activities.	
However,	the	privileges	should	be	
limited.	

Avoid	an	authorized	user	
execute	activities	as	another	
user.	

1	

The	system	should	ensure	business	user	
accounts	cannot	be	administrator	
accounts	and	vice-versa.	

Help	to	avoid	attackers	
escalate	user’s	accounts	to	
access	administrator’s	
features.	

1	

																		MyVAC-3-GUI-2-SSDLC-v1	

 46	

The	system	should	ensure	system	level	
accounts	have	limited	privileges.	

Help	avoiding	attackers	
escalate	user’s	accounts	to	
access	administrator’s	
features.	

1	

The	system	should	ensure	the	database	
access	is	performed	using	parameterized	
store	procedures	to	allow	all	table	access	
to	be	revoked.	

Apply	database	security	
principles.	

1	

The	system	should	avoid	store	sensitive	
static	content	in	web-accessible	
directory	paths.	The	content	should	be	
stored	in	non-accessible	directories	and	
proxy	access	to	this	content	using	a	
handler	that	will	implement	
authorization,	logging,	and	other	security	
functions.	

Avoiding	attackers	gain	access	
to	the	directory	paths	and	
discover	some	important	
information.	

1	

Availability	 The	backup	system	should	store	the	
recover	sources	in	a	network	system.	

To	help	in	case	of	failure	or	
intruder	action	

1	

The	system	should	do	mirroring	to	allow	
data	and	software	to	be	available	in	
physically	separated	locals	(separate	site	
when	the	application	is	on	the	Web)	

Help	minimize	the	risk	of	one	
single	point	of	failure.	

3	

The	system	should	apply	high	
availability	solution	such	as	clustering.			

Help	minimizing	the	impact	of	
potential	system	failures.	

3	

Integrity	 The	system	should	ensure	all	data	
provided	by	software	has	consistency	
(either	create	a	new	and	valid	state	of	
data,	or,	return	all	data	to	its	state	before	
a	transaction	was	started).	

To	avoid	an	authorized	person	
or	system	alter	data	
inadvertently	or	intentionally.	

1	

Auditing	 The	system	should	keep	historical	
records	(logging)	of	events	and	
processes	executed	in	or	by	an	
application.	

Define	more	specific	security	
loggings	to	allow	recreating	a	
clear	picture	of	security	
events.	

1	

Non-
Repudiation	

The	system	should	implement	
cryptographic	methods	such	as	
generating	digital	signatures	or	digital	
fingerprinting.	

Help	the	application	and	
system	avoiding	repudiation.	

1	

	

Notes:	Priority	depicted	with	1-High,	2-Medium,	3-Low.	

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 47	

Annex	C	

Reference	on	Procurement	Requirements	

In	 gathering	 requirements,	 organizations	 should	 have	 basic	 specifications	 needed	 and	 the	 idea	 of	 a	
structure	 for	 security	 software	 to	 be	 developed.	 Organizations	 should	 state	 the	 common	 security	
requirement	for	the	security	software	to	be	developed.		

The	targets	for	the	security	software	to	be	developed	are	as	follows:	

a) Risk	reduction	should	focus	on	reducing	vulnerabilities	and	minimize	the	severity	of	cyber-attacks.	
b) Software	assurance	where	organization	should	take	it	as	a	strategic	initiative	to	promote	integrity,	

security	and	reliability	in	software.		
c) Procurement	 specification	 for	 control	 software	 where	 organization	 put	 initiative	 to	 develop	

procurement	document	for	control	software,	including	hardware	and	software.	

The	goal	 for	preparing	 the	procurement	 requirements	 is	 to	ensure	 the	 security	 software	 that	will	be	
developed	has	the	complete	available	security	features.	The	organization	is	responsible	for:	

a) applying	the	security	requirements	to	the	secure	software	project	and	allocating	financial,	technical	
and	human	resources	as	required	for	meeting	the	security	requirements	of	the	project	

b) ensuring	that	the	security	controls	are	tested	and	validated	during	the	acceptance	test	phase	
c) maintaining	security	controls	throughout	the	life	cycle	of	secure	software.	

In	 terms	 of	 the	 procurement	 specification	 to	 describe	 the	 general	 idea	 of	 the	 secure	 software	 to	 be	
developed,	 as	 shown	 in	Figure	A-1	 (Refer	Annex	A),	which	presents	 the	 structure	of	 secure	 software	
architecture	in	the	web	environment.	This	diagram	shows	the	essential	elements	or	components	in	the	
security	software	and	their	relationship	with	users	and	the	Internet.	The	importance	of	this	architecture	
is	to:	

a) to	give	guidance	to	the	organization	for	their	new	secure	software	project	development	
b) to	clearly	define	possible	elements,	involve	such	as	assets	and	controls,		
c) to	define	the	scope	of	secure	software	to	be	developed	an	in-house	software	as	presented	in	Figure	

A-1	

As	 refer	 to	Figure	A-1,	 the	organization	can	provide	detailed	specifications	 for	as	 follows:	 identifying	
assets	to	determine	how	the	software	needs	to	be	protected.	Asset	identification	can	be	made	through	
different	viewpoints:	the	customer’s,	the	software	owner’s,	and	the	attackers.	After	identifying	the	assets,	
further	analysis	should	be	done	on	each	to	identify	a	priority	on	protection.	This	will	ensure	that	the	most	
valuable	 assets	 receive	 the	 most	 attention	 in	 threat	 mitigation.	 Assets	 include	 data,	 software,	 and	
hardware	components	and	communication	services.	

In	advance,	before	the	processes	of	proposing	specific	controls	to	the	components	of	the	software,	the	
organization	should	put	attention	to	critical	risk	management.	With	that,	during	the	risk	analysis	process	
organization	should	consider	the	following:		

a) The	threats	which	are	likely	to	want	to	attack	our	software	
b) The	risks	present	in	each	component	in	the	software	environment	 	
c) The	kinds	of	vulnerabilities	that	might	exist	in	each	component,	as	well	as	the	data	flow	 	
d) The	business	impact	of	such	technical	risks	were	they	to	be	realized	 	
e) The	probability	of	such	a	risk	being	realized	 	
f) Any	feasible	countermeasures	that	could	be	implemented	at	each	tier,	taking	into	 account	the	full	

range	of	protection	mechanisms	available	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 48	

The	continuing	steps	are	defining	and	exploring	the	available	possible	security	controls	that	should	be	
suggested	by	the	organization	to	ensure	security.	This	document	provides	guidelines	for	specific	security	
tasks	 of	 each	 phase	 in	 Secure	 Software	Development	 Life	 Cycle	 (SSDLC)	will	 assists	 organizations	 in	
providing	security	controls	to	the	secure	software	to	be	developed.	By	following	the	phases	from	early	to	
the	end	will	guide	the	organization	to	produce	a	complete	procurement	document.	

The	mechanism	for	the	purpose	of	procurement	and	accreditation	of	a	resilient	system	against	malicious	
encompasses	the	entire	life	cycle	of	an	asset.	This	procurement	can	be	accomplished	through	tenders,	
quotes,	and	direct	negotiations	in	accordance	with	current	regulations.	Steps	involve	are:	

a) Identify	Needs	–	Organization	should	identify	needs	before	any	procurement	either	through	a	vendor	
or	inhouse	
development.				

b) Procurement	 Specifications	 –	 The	 procurement	 specifications	 should	 contain	 specific	 clauses	
regarding	 security	 requirements,	 product	 security	 certifications,	 source	 code	 availability,	 data	
disposal	requirements,	preference	for	local	technologies	and	expertise,	as	well	as	the	requirement	of	
development	team	competencies.	

c) Vendor	 Management	 –	 Vendor	 management	 includes	 the	 management	 of	 vendors	 providing	
hardware	and	software,	consultancy	services,	and	managed	services.	

d) The	footprint	of	Resources	–	Footprint	of	resources	refers	to	the	complete	history	of	the	movement	
of	the	assets	from	the	origin	to	the	organization.	The	acquisition	process	should	ensure	a	complete	
record	 of	 the	 footprint	 of	 resources	 throughout	 the	 system	 life	 cycle.	 The	 footprint	 of	 resources	
should	include	the	complete	hardware	and	software	supply	chain.	

e) System	Life	Cycle	–	Security	should	be	incorporated	into	all	the	phases	of	the	system	development	
cycle,	including	software	conceptualization,	requirements	gathering,	design,	implementation,	testing,	
acceptance,	 deployment,	 maintenance,	 and	 disposal.	 It	 is	 recommended	 that	 planning	 for	 the	
Information	Security	Management	Plan	follows	the	stages	described	in	most	models	of	ICT	System	
Life	Cycle.	

f) Commissioning	 Process	 –	 A	 commissioning	 process	 of	 administrator	 role	 and	 conduct	 security	
posture	assessment	prior	to	system	commissioning	and	at	regular	intervals	during	implementation	
and	when	there	are	changes	to	the	environment.		

g) Decommissioning	 Process	 –	 Conduct	 backup	 and	 recovery	 test,	 and	 the	 data	 migration	 before	
decommissioning.	Change	management	should	be	conducted	to	inform	the	relevant	parties	regarding	
the	decommissioning	of	the	system.	

h) Disposal	–	Disposal	can	be	in	the	form	of	physical	destruction	and/	or	data	sanitization.	

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 49	

Annex	D	

Reference	on	Example	of	Use	Case	and	Misuse	Case	

A	use	case	models	the	intended	behavior	of	the	software.	This	behavior	describes	the	sequence	of	actions	
and	 events	 that	 are	 to	 be	 taken	 to	 address	 a	 business	 need.	 From	 use	 cases,	 misuse	 cases	 can	 be	
developed.	Misuse	cases,	also	known	as	abuse	cases,	help	 identify	security	requirements	by	modeling	
negative	 scenarios.	 Meanwhile,	 security	 use	 case	 should	 be	 used	 to	 specify	 requirements	 that	 the	
software	application	should	successfully	protect	or	mitigate	the	misuse	case.	

Referring	to	the	following,	Figure	D-1	shows	an	example	of	the	use	case	and	misuse	case	diagram.	The	
use	cases	identified	are	the	managed	item,	register	item,	edit/modify	items,	view	data,	and	borrow	items.		

The	misuse	cases	 identified	are	spoof	users,	 invade	privacy	and	manipulate	 items.	Meanwhile,	 for	the	
security	 use	 cases	 identified	 are	 ensure	 authorization	 for	 access	 control,	 ensure	 privacy,	 ensure	 the	
integrity,	and	ensure	non-repudiation.	

	

Figure	D-1:	Example	of	Use	case	and	Misuse	case	

	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 50	

Annex	E	

Reference	on	Example	of	Threat	Modeling	

Microsoft	Threat	Modelling	(MTM)	allows	software	architects	to	identify	and	mitigate	potential	security	
issues	early.	This	tool	is	providing	structured	analysis,	guided	analysis	of	threats,	and	mitigations	based	
on	 the	 STRIDE	 taxonomy.	 STRIDE	 is	 an	 acronym	 with	 the	 meanings	 are	 Spoofing,	 Tampering,	
Repudiation,	Information	Disclosure,	Denial	of	Service,	and	Elevation	of	Privilege.	Besides,	this	tool	also	
provides	 reporting	 capabilities	 that	 can	 be	 used	 later	 in	 secure	 coding	 review	 and	 security	
testing/verification	phases.		

The	tool	enables	anyone	to:	 	

a) Communicate	about	the	security	design	of	their	systems.	
b) Analyze	designs	for	potential	security	issues	using	a	proven	methodology.	
c) Suggest	and	manage	mitigations	for	identified	security	issues.	

	

	

Figure	E-1:	Data	Flow	Diagram	(DFD)	

The	Figure	E-1	shows	the	data	flow	diagram	(DFD)	of	the	standard	architecture	diagram.	This	tool	later	
will	 generate	 a	 set	 possible	 threat	 based	 on	 the	 architecture	 diagram	 provided.	 However,	 the	 result	
generated	from	the	tool	may	produce	false	positive.	An	analysis	is	required	to	choose	relevant	possible	
threats	 against	 the	 application	 developed.	 The	 result	 may	 be	 varied	 due	 to	 the	 setting	 set	 for	 each	
component	in	the	diagram.		 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 51	

Table	E-1	Possible	threats	generated	by	MTM	

Threat	 Category	(STRIDE)	
A.	Interaction:	Web	Server	à	Web	Application	

1.	Elevation	using	Impersonation	 E	
2.	Cross	site	scripting	 T	
3.	Replay	attacks	 T	

4.	Collision	attacks	 T	
5.	Weak	authentication	scheme	 I	
B.	Interaction:	Web	Application	à	Web	Server	

1.	Elevation	using	Impersonation	 E	
2.	Cross	site	scripting	 T	

3.	Web	server	process	memory	tampered	 T	
4.	Collision	attacks	 T	
5.	Replay	attacks	 T	

6.	Weak	Authentication	scheme	 I	
C.	Interaction:		SQL	Database	à	Web	Application	
1.	Potential	Excessive	Resource	Consumption	for	Web	Application	or	
SQL	Database	

D	

2.	Potential	SQL	Injection	Vulnerability	for	SQL	Database	 T	
3.	Spoofing	of	Destination	Data	Store	SQL	Database	 S	
4.	Authorization	bypass	 I	

5.	Weak	credential	storage		 I	
6.	Authenticated	data	flow	compromised	 T	

D.	Interaction:	Web	Application	à	SQL	Database	
1.	Weak	access	control	for	a	resource	 I	
2.	Persistent	cross	site	scripting	 T	

3.	Cross	site	scripting	 T	
4.	Spoofing	of	source	data	store	SQL	DB	 S	
E.	Interaction:	Browser	à	Web	Server	

1.	Elevation	using	impersonation	 E	
2.	Web	server	process	memory	tampered	 T	

3.	Collision	attacks	 T	
4.Replay	attacks	 T	
5.	Weak	Authentication	scheme	 I	

F.	Interaction:	Web	Server	à	Browser	
1.	Elevation	using	impersonation	 E	
2.	Cross	site	scripting	 T	

																		MyVAC-3-GUI-2-SSDLC-v1	

 52	

Bibliography	

[1] Chris,	 R.,	 "How	 to	 put	 the	 S	 (for	 security)	 into	 your	 IoT	 development,"	 18	 July	 2017.	 [Online].	
Available:	https://techbeacon.com/security/how-put-s-security-your-iot-development.	[Accessed	
7	May	2019]	

[2] Giannakidis,	A.,	2018,	“Overview	and	Evolution	of	Virtual	Patching”,	25	September	2018.	[Online].	
Available:	 https://dzone.com/articles/introduction-to-virtual-patching.	 [Accessed	 28	 August	
2019]	

[3] ISO/IEC	 27000:	 2014(E),	 Information	 technology	 –	 Security	 techniques	 –	 Information	 security	
management	systems	–	Overview	and	vocabulary	

[4] ISO/IEC	 27002:2013(E),	 Information	 technology	 –	 Security	 techniques	 –	 Code	 of	 practice	 for	
information	security	controls	

[5] Kanda	 Software,	 “Software	 Security	 Services”,	
https://www.kandasoft.com/softwaredevelopment/software-security-services.html	

[6] Limited,	Ernst	&	Young	Global	and	The	Associated	Chambers	of	Commerce	and	Industry	of	India	
(ASSOCHAM),	 "Cybersecurity	 for	 Industry	 4.0:	 Cybersecurity	 implications	 for	 government,	
industry	and	homeland	security,"	Ernst	&	Young	LLP.	Published	in	India.,	Kolkata,	2018	

[7] Malaysia	 Common	 Criteria	 (MyCC),	 [Online].	 Available:	
https://www.cybersecurity.my/mycc/about.html.	[Accessed	28	August	2019]	

[8] Malaysia	 Trustmark,	 [Online].	 Available:	 https://mytrustmark.cybersecurity.my/.	 [Accessed	 28	
August	2019]		

[9] Mano	Paul,	2014,	Official	(ISC)2®	Guide	to	the	CSSLP®	CBK®	Second	Edition,	CRC	Press,	Taylor	&	
Francis	Group	

[10] McGraw,	 G.,	 2005,	 “Software	 Security:	 Building	 Security	 In”,	 Addison-Wesley	 Software	 Security	
Series	

[11] MySEAL	 (National	 Trusted	 Cryptographic	 Algorithm	 List),	 [Online].	 Available:	
https://myseal.cybersecurity.my/en/about.html.	[Accessed	28	August	2019]	

[12] NIST	Special	Publication	800-115	Technical	Guide	to	Information	Security	Testing	and	Assessment,	
2008	

[13] NIST	special	publication	800-64	Revision	2,	Security	Considerations	in	the	System	Development	
Life	Cycle,	2008	

[14] Null,	C.,	"3	big	IoT	security	fears,	and	how	developers	can	tackle	them,"	31	March	2016.	[Online].	
Available:	 https://techbeacon.com/app-dev-testing/3-big-iot-security-fears-how-developers-
can-tackle-them.	[Accessed	7	May	2019]	

[15] OWASP	Code	Review	Guide	Version	2.0,	2017	
[16] OWASP	Secure	Coding	Practices	Quick	Reference	Guide,	Version	2.0,	2010	
[17] Pfleeger,	 C.P.,	 Pfleeger,	 S.L.,	 &	Margulies,	 J.	 2015.	 Security	 in	 Computing,	 Fifth	 Edition,	 Pearson	

Education,	Inc.:	Upper	Saddle	River,	NJ	
[18] Prasad,	 K.V.M.	 &	 Kishore,	 J.K.,	 2013,	 “Security	 Requirements	 Analysis	 for	 The	 Development	 of	

Secure	GEOSCHEMACS”,	International	Journal	of	Engineering	Research	&	Technology	(IJERT),	2(8):	
308-321	

[19] Rangka	Kerja	Keselamatan	Siber	Sektor	Awam	(RAKKSSA),	Version	1.0,	April	2016	
[20] Rodriguez,	 J.,	2006,	“Common	Security	Requirement	Language	for	Procurements	&	Maintenance	

Contracts”,	Homeland	Security,	8	December	2006	
[21] Silva,	M.A.	&	Danziger,	M.,	2015,	The	importance	of	security	requirements	elicitation	and	how	to	do	

it.	Paper	presented	at	PMI®	Global	Congress	2015—EMEA,	London,	England.	Newtown	Square,	PA:	
Project	 Management	 Institute.	 https://www.pmi.org/learning/library/importance-of-security-
requirements-elicitation-9634	

																		MyVAC-3-GUI-2-SSDLC-v1	

 53	

[22] Software	Assurance	Maturity	Model,	 Version	 1.0	 (SAMM-1.0),	 A	 guide	 to	 building	 security	 into	
software	development	

[23]	 Srivastava,	 S.,	 "Cybersecurity	 and	 IOT	 Industry	 Facing	 Skill	 Shortage	 Leading	 to	 Development	
Issues,"	25	April	2019.	[Online].	Available:	https://www.analyticsinsight.net/cyber-security-and-
iot-industry-facing-skill-shortage-leading-to-development-issues/.	[Accessed	7	May	2019]	 	

																		MyVAC-3-GUI-2-SSDLC-v1	

 54	

Acknowledgements	

CyberSecurity	Malaysia	would	like	to	express	our	appreciation	and	gratitude	to	all	members	of	Technical	
Committee	on	Guidelines	 for	Secure	Software	Development	Life	Cycle	(SSDLC)	who	have	participated	
tirelessly	in	the	development	of	this	guideline.	Members	are	as	follows:		

Ts.	Dr.	Zahri	Yunos/	 CyberSecurity	Malaysia	
Ts.	Dr.	Solahuddin	Shamsuddin/	 	
Ts.	Dr.	Maslina	Daud/	 	
Mr.	Abdul	Fuad	Abdul	Rahman/	 	
Mr.	Ahmad	Zairi	Coursesenu/	 	
Mr.	Khairul	Azri	Zainal	Abidin/	 	
Ms.	Farihan	Ghazali/	 	
Ms.	Harmi	Armira	Mohamad	Har/	 	
Ms.	Norul	Huda	Rasdi/	 	
Mr.	Shazil	Imri	Mohd	Hizam	 	
Mr.	Wilson	Lim	 Across	Vertical	Sdn	Bhd	
Mr.	Saiful	Bahry	M.	Hissham	 Dell	Global	Business	Center	Sdn	Bhd	
Mr.	Subki	Zakaria	 DXC	Technology	
Mr.	Mohd	Hazwan	Hussin	 HeiTech	Padu	Bhd	
Ms.	Harinawati	Ahmad	 KKMM	
Dr.	Syarbaini	Ahmad	 KUIS	
Ms.	Haslinda	Mat	Akhir/	 MAMPU	
Mr.	Mohd	Nawawi	Mustafa/	 	
Mr.	Muhammad	Hadri	Basri	 	
Ts.	Hafizi	Jalil	 MyREN	
Ms.	Aina	Nabila	Abd	Razak	 NeuDimension		
Mr.	Hairul	Anuar	Mat	Nor/	 SKMM	
Ms.	Nor	Hashikin	Rohani	 	
Mr.	Mohd	Rafyiq	Ramli/	 TEKUN	Nasional	
Ms.	Wan	NoorFatin	Wan	Saris	 	
Mr.	Harmizan	Mohd	Har	 Telekom	Malaysia	
Mr.	Mohd	Hazman	Hussin	 Telekom	(R&D)	Malaysia	
Prof	Madya	Dr.	Fadzlida	Mat	Sani/	 UPM	
Dr.	Noor	Afiza	Mohd	Ariffin	 	
Mr.	Meor	Nazrin	M	Meor	Ahmad/	 Venture	Nuclues	(M)	Sdn.	Bhd	
Mr.	Muhammad	Firdaus	Yahaya	 	

	
	

	

	

