

Framework of Analysis Technique for Abnormal Behavior in Mobile
Application (FATABMA)

NAQLIYAH BT ZAINUDDIN*, MOHD.FAIZAL BIN ABDOLLAH,ROBIAH BT
YUSOF,SHAHRIN BIN SAHIB

Faculty of Information and Communication Technology
University Technical Malaysia Malacca

Karung Berkunci No. 1752 Pejabat Pos Durian Tunggal, 76109 Melaka
MALAYSIA

*M031110026@student.utem.edu.my
[faizalabdollah,robiah,shahrin]@utem.edu.my

http://www.utem.edu.my

Abstract: - Abnormal application behavior in mobile can produce a number of undesirable effects. An
incorrect or insufficient implementation of application lifecycle, memory related issues and malicious
application might cause an unexpected behavior of the application such as bad usability, not
responding, crashed and even data loss. Current analysis and detection of abnormal applications
behavior are still not comprehensive enough where behavior under user visible failure category such
as crash, “stopped unexpectedly” and “not responding” received less attention by researchers.
Furthermore, framework of analysis technique has not been developed by researcher to investigate the
abnormal behavior in mobile application. Thus, this research will introduce the framework of analysis
technique for abnormal behavior in mobile application. In this paper, both static and dynamic analysis
techniques are described and applied to Android applications to identify causes of abnormal behavior.
These allow the identification of android abnormal application behavior into “behavior groups”,
which consists certain behavior that tends to have similar generalized activity profiles.

Key-Words: Abnormal behavior, application, Android, analysis techniques

1 Introduction

In today’s world, mobile applications are
becoming increasingly important in all aspects
of our lives. No longer are phones reserved just
for making calls, they now do more than the
PC’s of a few years ago. The open source
Android operating system is a great example of
the future of mobile applications. The rapid
growth of smartphones has lead to a renaissance
in mobile application services. Android and
iOS, currently the most popular smartphone
platforms, each offer their own public
marketplace.

Detection of malwares, resources issues
and others factors which causing unexpected or
abnormal behavior in mobile application has
been the main focus by researchers in mobile
security. In the area of mobile applications, an
application life cycle plays an important role.

According to Lbishop (2012), Android
applications must conform to the Android OS’s
concepts of application lifecycle. Franke et. al.
(2012) also highlighted that, an incorrect or
insufficient implementation of the life cycle
might cause unexpected behavior of the
application, leading to bad usability and even
data loss. When an application crashes, it may
disrupts the user experience, cause data loss,
and worst of all, might even cause users to
uninstall the application altogether.

Malicious software also will result in
unexpected behavior by attempting to leak
personal information, getting root privilege and
abuse functions of the mobile [3]. Luo et. al.
(2012) has stressed that even if applications
have acquired explicit user consents, users may
be unaware that the applications may execute
malicious behaviors. Besides, Delac et. al.

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 209

mailto:M031110026@student.utem.edu.my�
http://www.utem.edu.my/�

(2011) also highlighted other standard
malicious attacks for PCs, like worms and
Trojans is also becoming applicable to the
mobile platforms. Malicious software such as
Geimini and DroidDream will result in
unexpected behavior by attempting to leak
personal information, getting root privilege and
abuse functions of the smartphone as reported
by Isohara et. al. (2011a). Pocatilu (2011) also
has reported that the behavior of malicious
applications could vary from annoying
messages to very unrecoverable damages.
Definitely, a compromised smartphone can
inflict severe damages and caused unexpected
behavior in Android application. Moreover,
memory leaks also are highlighted by Joshi
(2012) as one of the major issues seen on the
performance side of the mobile application
which causing a sluggish behavior. Peng et. al.
(2008) and Park et. al. (2012) also emphasized
that the memory leak phenomenon will affect
the memory usage, affects the application to
switch efficiency and cause the increase of
memory usage and diminish overall system
performance. Despite the capability of Android
to handle memory allocation using garbage
collection, Shahriar et. al.(2014) in his research
identified that many applications currently
suffer from memory leak vulnerabilities and
causing applications to crash due to out of
memory error while running.

Above researchers highlighted the
possible reasons on unexpected or abnormal
behavior in an android application. Despite the
outbreak of research activity in this area, Wei
(2013) has highlighted that there is no
framework yet that focuses on analysis and
profiling the behavior of an Android
application. Definitely, abnormal behavior in
mobile application can produce a number of
undesirable effects which might cause an
unexpected behavior such as bad usability, not
responding, crashed and even data loss.
Majority of works done are focusing on
detecting of malicious behavior due to
malicious software whereas less work done so
far in identifying abnormal application behavior
which causing application to crash, “stopped
unexpectedly” and “not responding”.

2 Related Works
“CrowDroid” is a framework introduced

by Burguera et. al. (2011b). The framework is
using dynamic analysis on system call (Strace)
which enable the distinguishing between
applications that having the same name and
version but behave differently. The focus of the
framework is to detect anomalously application
in form of Trojan horses. CrowDroid used
Strace to output the behavior patterns such as
system calls of installed applications on users’
devices. This information is sent to a remote
server where the system calls are clustered
using a K-means algorithm into benign and
malicious categories. CrowDroid concluded that
open(), read(), access(), chmod() and chown()
are the most used system calls by malware.
Moreover, Shabtai et. al. (2011) introduced
“Andromaly” another behavioral malware
detection framework for android devices.
Andromaly is a lightweight malware detection
system using Machine Learning classification
techniques to classify collected observations
(system performance, user activity, memory,
CPU consumption, battery exhaustion etc) as
either normal or abnormal.

Another work is by Bl et. al. (2010)
proposed “AASandbox” (Android Application
Sandbox). AASandbox is using static and
dynamic approach to automatically detect
suspicious application. For static approach,
AASandbox scans the software for malicious
patterns without installing it. While for dynamic
approach, the analysis on the application is
conducted in fully isolated environment which
intervenes and logs low-level interactions.
Karami et. al.(2013) had introduced a
comprehensive software inspection framework.
The framework allows identification of
software reliability flaws and to trigger malware
without require source-code. The framework is
using dynamic approach by collecting run-time
behavior analysis and also the I/O system calls
generated by the applications.

Kim (2011) had introduced “ModelZ” for
monitoring, detection, and analysis of energy-
greedy anomalies in mobile handsets. Using
light weight approach, ModelZ will monitor,
detect and analyze new or unknown threats and
energy-greedy anomalies on small mobile

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 210

devices, with high accuracy and efficiency.
Alazab et. al.(2012) introduced “DroidBox” a
dynamic analysis tool to classify Android
applications by monitoring API calls of interest
invoked by an application. The analysis
includes generating two graphs (behavior
graphs and treemap graphs) for sample in order
to provide the basis in identifying benign or
malicious categories.
 Thing et. al.(2011) also had used system
call, logs and timestamp information in his
research to detect the “misbehaving”
applications, alert the users, and log the
evidence of malicious activities with. From the
discussion on analysis technique in detecting
malicious application, Strace is identified as a
common tool in Android research and it has
been used in works on malware detection by
most of the researchers. Strace used the view of
Linux-kernel such as network traffic, system
calls, and file system logs to detect anomalies in
the Android system. Furthermore, Burguera et.
al. (2011a) also emphasized that monitoring
systems calls (Strace) is one of the most
accurate techniques to determine the behavior
of an Android application since they provide
detailed low level information. In the next
section, we will discuss on other analysis
technique used by researchers in analyzing
other type of abnormal behavior due to
resources leaks and application life-cycle.

The detection of resources problems in
mobile application has been studied by Guo et.
al. (2013), Yan (2013) and Park et. al. (2012).
Guo et. al. (2013) introduced an approach using
static analysis tools called Relda, which can
automatically analyze an application’s resource
operations and locate resource leaks. The
method is based on a modified Function Call
Graph, which handles the features of event-
driven mobile programming by analyzing the
callbacks defined in Android framework.

Yan (2013) proposed a novel and
comprehensive approach for systematic testing
for resource leaks in Android application. The
approach is based on a GUI model, but is
focused specifically on coverage criteria aimed
at resource leak defects. These criteria are based
on neutral cycles: sequences of GUI events that

should have a “neutral” effect and should not
lead to increases in resource usage.

 The work on memory leakage detection
is by Park et. al. (2012b) using a PCB hooking
technique. The technique is using dynamic
analysis by gathering memory execution
information (i.e.; process ID, priority, shared
library list, specific process-resource list) in
run-time to detect memory leakage. In the
experiment, Memory Analysis Tool (MAT) was
used as a comparison with their invented tool.

The only work on monitoring software
crashes is by Kim et. al. (2010) who presented
a framework which monitors and reproduces
software crashes. This approach involves
learning patterns from features of methods that
previously crashed to classify new methods as
crash-prone or crash-resistant. Investigations
had shown that 30% of crashed methods in
ECLIPSE and 44% from ASPECTJ threw
exceptions. The remaining 70% of crashed
methods are not throwable and it is less
common to see developers throw runtime
exceptions in their programs.

 Futhermore, Franke et. al. (2012)
presented a tool called ‘AndroLIFT’ which
helps the developer to monitor the life cycle,
assists in implementing it and testing life cycle-
related properties. AndroLIFT is written as an
extension to the ADT, the common way of
developing Android applications with the
Eclipse IDE. The life cycle view of this tool
allows the developer to observe and analyze the
life cycle of the Android application. Besides, it
allow developer to easily learn about the
behavior of the application life cycle to certain
triggers, like an incoming call, and with which
callback methods one can react appropriately.
The summary of analysis techniques used in the
detecting malicious and abnormality in mobile
application is depicted in Table 2.1.

Table 2.1: Analysis Techniques in

Detecting Abnormal Behavior in Mobile
Application

Works
Related

Category Criteria of Detecting
Abnormal Behavior

ModelZ
Kim (2011)

Energy-
greedy

anomalies

Monitor and record usage of
software and hardware
resouces

CrowDroid
Burguera et.

Malicious
software

Using Strace to output the
behavior patterns such as

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 211

Works
Related

Category Criteria of Detecting
Abnormal Behavior

al. (2011) system calls
Andromaly
Shabtai et. al
(2011)

Malicious
software

Using Machine Learning
Classification to classify
collected observation
information

AASandbox
Bl et. al.
(2010)

Malicious
software

Intervenes and logs low-
level interaction of an apps

Karami et.
al. (2013)

Malicious
software

Collecting run-time
behavior analysis and also
I/O system calls generated
by an apps

Isohara et.
al. (2011b)

Malicious
software

Using log collector to record
activity on kernel layer

Guo et. al.
(2013)

Resource
leaks

Using Function Call Graph

Yan (2013) Resource
leaks

Using GUI model to detect
resource leaks defect

Park et. al.
(2012)

Memory
leakage

Using PCB hooking
technique to gather memory
execution information

Kim et. al.
(2010)

Crash
method

Learning patterns from
features of the method that
previously crashed

AndroLIFT
Franke et. al.
(2012)

Monitor apps
life-cycle

Using an extension to ADT

DroidBox
Alazab et.
al. (2012)

Malicious
software

Monitoring API calls of
interest invoked by an apps

Thing et. al.
(2011)

Malicious
software

Using strace to log the
system call, logs and
timestamps information
invoked by an apps

Wei (2013) Profiling of
Android

application

Measure and profile the
apps at four layers

All in all, the aforementioned frameworks
and systems as stated in Table 2.1 proved
valuable in protecting mobile devices in
general. Most of the works are focusing on
malware detection in mobile application using
both dynamic and static analysis techniques.
Detection technique on malicious software
received a lot of attention by researchers.
However, there is a gap in identifying the
abnormal behavior which may lead to behavior
of crash, “stopped unexpectedly” and “not
responding”. Therefore this research will
develop a framework of analysis technique for
abnormal behavior for user visible failure
category which includes crash, “stopped
unexpectedly” and “not responding”.

From the discussion on analysis technique
in detecting malicious application, Strace is
identified as a common tool in Android research
and it has been used in works on malware

detection by most of the researchers. Strace
used the view of Linux-kernel such as network
traffic, system calls, and file system logs to
detect anomalies in the Android system.
Furthermore, Burguera et. al. (2011a) also
emphasized that monitoring systems calls
(Strace) is one of the most accurate techniques
to determine the behavior of an Android
application since they provide detailed low
level information.

Moreover, Franke et. al. (2012) has
highlighted that logcat is identified as the main
logging mechanism in mobile application.
Logcat allows us to capture the system debug
output and log messages from the application.
Wei (2013) used a combination of the logcat
and getevent tools of ADB to gather the data of
the user layer for multi-layer profiling of
Android application.

A specific tool for memory analysis is
Memory Analyzer Tool (MAT). The MAT
tooling is a set of plug-ins which visualizes the
references to objects based on Java heap dumps
and provides tools to identify potential memory
leaks in Android applications. The MAT detects
leakage by analyzing heap memory of one
application. MAT analyzes heap memory
situation when extracting log, and shows
information which turns into a cause of memory
leakage defect (Park et. al., 2012).

Therefore, the proposed framework of
analysis technique here is adapting the
techniques used by existing researchers in
mobile application research. As shown in Table
2.2, this research utilized a combination of
Linux trace (Strace) and Android debug
facilities techniques (logcat and MAT) to
profile the abnormal behavior in mobile
application for user visible failure category
which are crash, “stopped unexpectedly” and
“not responding”.

Table 2.2: Analysis Techniques for Abnormal
Behavior

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 212

3 Datasets and Environment

Applications involved in these
experiments are from various categories such as
games, security software, tools and some others
that were randomly installed from Google Play
and other sites such as from
http://www.appsapk.com/ and
http://www.androidcentral.com/apps. Using
APK Downloader which runs under Google
Chrome, an .apk files was downloaded into
laptop prior to configuration under emulator.

For emulator, the logs were captured
using logcat, a logging application in Android
platform tools. The analysis also includes logs
gathered from other researcher who also
conducted some experiment on Android
platform. Total logs size are more than 3GB.
However, crashed logs are found less than 10%.
The focus of this analysis is on abnormal
application behavior and these findings were
later analyzed to construct a framework for
abnormal application behavior. The
configurations of the devices is shown in Table
3.1.

Dataset Devices Configurations Total

Apps.

1 Galaxy Tablet
Samsung
P3100 4.0.4

Total Space 11GB 120

2 Android
Emulator
2.3.4 (API
Level 10)

RAM=343, VM
Heap = 32, Internal
Storage=200 MiB

20

Android
Emulator
2.3.3 (API
Level 10)

RAM=343, VM
Heap = 32, Internal
Storage=200 MiB

40

3 Android
Emulator 2.2
(API Level 8)

RAM=512, VM
Heap = 16, Internal
Storage=200 MiB

50

Table 3.1: Devices Cofigurations

For simulation on the emulator, we organized
three test scenarios where possible abnormal
behavior such as; memory leakage can occur in
applications. The scenarios are as follows.
• Scenario 1- Running multiple applications

simultaneously

• Scenario 2-Switching between
vertical/horizontal views

• Scenario 3- Repeatedly creating and
terminating an application

These similar test scenarios were also
conducted by Park et. al. (2012b) in Android
memory related experiments. On real devices,
around 120 applications were installed and
monitored for abnormal application behavior.
The logs were collected using an application
named LogCollector.apk and also using
automated crashed detector application named
Crash Log.apk in the event of application is
crashing, not responding or unexpectedly
stopped.

The framework for analysis technique as
shown in Figure 3.1 is proposed as this
framework is needed for identifying abnormal
behavior in mobile application.

No Techniques Tools/Interface Objectives

1 Logcat
Analysis

Manual analysis on
extracted stack
traces

To understand the
application level
activity sequence for
abnormal activity

2 Heap dump

Analysis

Eclipse MAT
(Memory Analyzer
Tool)

To identify the
objects and classes
consuming memory
in the java heap

3 STRACE
Analysis

adb shell strace -p
<PID_number>

To identify system
calls or signals made
to the OS

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 213

http://www.appsapk.com/�
http://www.androidcentral.com/apps�

Figure 3.1: Framework for Analysis Technique
of Abnormal Behavior in Mobile Application

(FATABMA)

4 Analysis and Results
Based on framework proposed above, 3
multistep data collection and analysis are
conducted as following:

4.1 Logcat Analysis
For logcat analysis, we have collected around
50 stack traces for crashes and ANR
applications. We analyzed the abnormal
behavior manually based on keywords
identified. Details analysis of the attributes
gathered from the logcat are as following:
a) Identification of warnings/errors thrown

The result had shown that 80% of the crashes
and ANR thrown an unhandled exception due to
java.lang. The unhandled exceptions thrown
include illegalArgumentException,
illegalStateException, nullPointerException,
outOfMemory and other exceptions. Memory
related problems can be identified from the
extracted stack traces such as
java.lang.OutOfMemoryError, buffer overflow
and Out of memory.

b) Identification of GC activity patterns

There are 5 types of GC can be found in logcat.
GC_CONCURRENT is triggered when a heap
is growing by reclaiming memory in time so
that the heap does not need to be enlarged.
GC_EXPLICIT is triggered when an application
issuing System.gc() method. Since the virtual
machine is quite capable of handling GC, this
type of GC should actually never be called.
GC_EXTERNAL_MALLOC is used for
externally allocated memory like bitmaps and
NIO direct byte buffers. This is only on pre-
Honeycomb devices because from Honeycomb
the external memory is allocated inside dalvik
heap. GC_FOR_MALLOC is triggered when
the heap is full and the application needs more
memory. This will stop application to perform a
GC. GC_HPROF_DUMP_HEAP is triggered
when an HPROF file is created for memory
analysis. GC activities in this context are an
automatic and continuous process until the
application abnormally terminated.
GC_Concurrent and GC_For_Malloc are
occurred automatically and repeatedly.
GC_For_Malloc was triggered when there was

not enough memory left on the heap to perform
an allocation. While, GC_Concurrent was
triggered when the heap has reached a certain
amount of objects to collect and appeared to
free <1K left memory. Therefore, this research
concluded that GCForAlloc is the most frequent
GC appeared in this study which is 68%.

c) Identification of CPU Usage patterns

We found very little logs thrown the CPU usage
indicators for their applications. However, the
result shows an increase in CPU usage more
than 40% for ANR and crashed applications. An
application is totally crashed or not responding
when the log throws the messages such as
“service crashed”, “WINDOW died” and “WIN
death”. Initial analysis using logcat allows us to
investigate on possibility of memory issues on
application.

4.2 Heap-dump Analysis
Heap dump files were later generated from
crashed applications to perform the memory
analysis. In this phase, we managed to
capture 40 crashed applications with the
heap size around 1.4MB to 4.8MB. The
results show that all suspected leaks are on
the same classes/objects which are;
java.lang.Class (leaks suspects range
around 33% - 39%), java.lang.String (leaks
suspects range around 17% - 19%) and
org.bouncycastle.jce.provider.X509Certific
ateObject (leaks suspects range around 15%
- 17%). Highest memory consumptions by
objects/classes are found on
org.apache.harmony.xnet.provider (around
186KB), class android.text (around 123KB),
and org.bouncycastle.jce (around 61KB).

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 214

Figure 4.1: Leaks Suspected on

Crashed/ANR Applications

Figure 4.1 shows only some portion of
applications with leaks suspected objects and
classes. So far, leaks suspected and high
memory consumptions are found on the same
classes/object.

4.3 STRACE

The result shows that the only system call made
during ANR and crashed application is
“SIGKILL”. The strace will return a message
“kill(<pid>, SIGKILL <unfinished ...>” to
terminate the process immediately. In Linux,
the kill command is used to terminate processes
without having to log out or reboot (i.e., restart)
the computer or devices. A pid is a unique
process identification number belonging to each
process and it is created to be used by the
system for referencing to the process. This is to
ensure the stability of such systems, in other
words to ensure that an application is
completely terminated. No other system call
was found for this type of behavior.

5 Conclusions

The framework of analysis techniques for
abnormal application behavior is presented here
as a way to identify the reasons of abnormal
activity in mobile application This work
proposes a framework of analysis technique on
identifying abnormal behavior patterns: (i) To
understand the application level activity
sequences for abnormal activity via logcat (ii)
To identify the objects and classes consuming
memory in the java heap (iii) To identify
system calls or signals made to the OS using
Strace. This research discovered common
patterns by applications in category user visible
failure which are; crash, “stopped
unexpectedly” and “not responding” where
stack trace analysis provide initial information
for further investigation on possibility of
memory related issues in an application.

REFERENCES

[1] Lbishop, “ANDROID LIFECYCLE FOR
APPLICATION DEVELOPERS :,” no.
May, 2012.

[2] D. Franke and T. Roy, “AndroLIFT : A
Tool for Android Application Life
Cycles,” no. c, pp. 28–33, 2012.

[3] T. Isohara, K. Takemori, and A. Kubota,
“Kernel-based Behavior Analysis for
Android Malware Detection,” pp. 1011–
1015, 2011.

[4] H. Luo, G. He, X. Lin, and X. (Sherman)
Shen, “Towards hierarchical security
framework for smartphones,” 2012 1st
IEEE Int. Conf. Commun. China, pp.
214–219, Aug. 2012.

[5] G. Delac, M. Silic, and J. Krolo,
“Emerging Security Threats for Mobile
Platforms,” Electr. Eng., pp. 1468–1473,
2011.

[6] P. Pocatilu, “Android Applications
Security,” Management, vol. 15, no. 3,
pp. 163–172, 2011.

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 215

[7] M. Joshi, “Analysis and Debugging of
OEM’s,” 2012.

[8] L. Peng, J.-K. Peir, T. K. Prakash, C.
Staelin, Y.-K. Chen, and D. Koppelman,
“Memory hierarchy performance
measurement of commercial dual-core
desktop processors,” J. Syst. Archit., vol.
54, no. 8, pp. 816–828, Aug. 2008.

[9] J. Park and B. Choi, “Automated
Memory Leakage Detection in Android
Based Systems,” vol. 5, no. 2, pp. 35–42,
2012.

[10] H. Shahriar, S. North, and E. Mawangi,
“Testing of Memory Leak in Android
Applications,” 2014 IEEE 15th Int.
Symp. High-Assurance Syst. Eng., pp.
176–183, Jan. 2014.

[11] X. Wei, “ProfileDroid : Multi-layer
Profiling of Android Applications
Categories and Subject Descriptors,”
2013.

[12] I. Burguera and U. Zurutuza,
“Crowdroid : Behavior-Based Malware
Detection System for Android,” System,
pp. 15–25, 2011.

[13] A. Shabtai, U. Kanonov, Y. Elovici, C.
Glezer, and Y. Weiss, “‘Andromaly’: a
behavioral malware detection framework
for android devices,” J. Intell. Inf. Syst.,
vol. 38, no. 1, pp. 161–190, Jan. 2011.

[14] T. Bl, L. Batyuk, A. Schmidt, S. A.
Camtepe, S. Albayrak, and T. Universit,
“An Android Application Sandbox
System for Suspicious Software
Detection,” Techniques, pp. 55–62, 2010.

[15] M. Karami, M. Elsabagh, P.
Najafiborazjani, and A. Stavrou,
“Behavioral Analysis of Android
Applications Using Automated
Instrumentation,” 2013 IEEE Seventh Int.
Conf. Softw. Secur. Reliab. Companion,
pp. 182–187, Jun. 2013.

[16] H. Kim, “MODELZ: Monitoring,
Detection, and Analysis of Energy-
Greedy Anomalies in Mobile Handsets,”
IEEE Trans. Mob. Comput., vol. 10, no.
7, pp. 968–981, Jul. 2011.

[17] M. Alazab, V. Monsamy, L. Batten, P.
Lantz, and R. Tian, “Analysis of
Malicious and Benign Android
Applications,” 2012 32nd Int. Conf.
Distrib. Comput. Syst. Work., pp. 608–
616, Jun. 2012.

[18] V. L. L. Thing, P. P. Subramaniam, F. S.
Tsai, and T. Chua, “Mobile Phone
Anomalous Behaviour Detection for
Real-time Information Theft Tracking,”
no. c, pp. 7–11, 2011.

[19] C. Guo, J. Zhang, J. Yan, Z. Zhang, and
Y. Zhang, “Characterizing and detecting
resource leaks in Android applications,”
2013 28th IEEE/ACM Int. Conf. Autom.
Softw. Eng., pp. 389–398, Nov. 2013.

[20] D. Yan, “Systematic Testing for
Resource Leaks in Android
Applications,” no. Vm, pp. 411–420,
2013.

[21] S. Kim, N. Bettenburg, and T.
Zimmermann, “Predicting Method
Crashes,” 2010.

[22] T. Isohara, K. Takemori, and A. Kubota,
“Kernel-based Behavior Analysis for
Android Malware Detection,” 2011
Seventh Int. Conf. Comput. Intell. Secur.,
pp. 1011–1015, Dec. 2011.

Recent Advances in Electrical Engineering and Electronic Devices

ISBN: 978-1-61804-266-8 216

